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Abstract

Serre’s conjecture relates two-dimensional odd irreducible characteris-
tic p representations to modular forms. We discuss a generalization of this
conjecture (due to Ash and Sinnott) to higher-dimensional Galois repre-
sentations. In particular, we give a refinement of the conjecture in the case
of wildly ramified Galois representations and we provide computational
evidence for this refinement.

1 Introduction

In [4], Ash and Sinnott stated a conjecture which relates certain n-dimensional
Galois representations with arithmetic cohomology classes. This conjecture
is the beginning of a vast generalization of Serre’s conjecture relating two-
dimensional odd irreducible Galois representations defined over F̄p with mod
p reductions of modular forms. Both Serre’s conjecture and its generalization
predict a weight for an object corresponding to a Galois representation. Serre’s
conjecture gives a precise prediction of the weight of a modular form corre-
sponding to any odd irreducible two-dimensional Galois representation. On the
other hand, in certain cases the conjecture of Ash and Sinnott asserts that at
least one of several weights yields a cohomology eigenclass corresponding to an
odd n-dimensional Galois representation. In this paper we discuss a refinement
of the conjecture of Ash and Sinnott clarifying which of their predicted weights
should actually contain an eigenclass corresponding to a given Galois represen-
tation and we present computational evidence for this refinement. We note that
Ash and Sinnott only dealt with niveau one Galois representations—in [1] their
conjecture is extended to more general Galois representations, but the ambigu-
ity is not addressed. In this paper, we do not address the ambiguity in the case
of higher niveau representations. The computational evidence in this paper all
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concerns niveau one representations in characteristic p with 5 ≤ p ≤ 17. In
addition, examples of wildly ramified Galois representations in characteristics
two and three appear in [3] and [2]. The results of the computations done in
these papers also support the refined conjecture.

2 The conjecture of Ash and Sinnott

2.1 Definitions

In this section, we give brief definitions of the objects relating to the conjecture
of Ash and Sinnott. These definitions follow [4] and [1], and these papers should
be consulted for more details.

2.1.1 Hecke operators

Let Γ0(N) be the subgroup of matrices in SLn(Z) whose first row is congruent
to (∗, 0, . . . , 0) modulo N . Define SN to be the subsemigroup of integral ma-
trices in GLn(Q) satisfying the same congruence condition and having positive
determinant relatively prime to N .

If we let H(N) be the F̄p algebra of double cosets Γ0(N)\SN/Γ0(N), then
H(N) is a commutative algebra that acts on the cohomology and homology of
Γ0(N) with coefficients in any F̄p[SN ]-module. We call this algebra of double
cosets the Hecke Algebra and its elements Hecke operators. We single out
certain Hecke operators related to diagonal matrices—namely, for a prime ` let
D(`, k) be the diagonal matrix with the first n − k diagonal entries equal to 1
and the remaining k entries equal to `. The Hecke operator (or double coset)
corresponding to D(`, k) will then be denoted by T (`, k).

Definition 1. Let V be an H(pN)-module and suppose that v ∈ V is a simulta-
neous eigenvector for all T (`, k) such that T (`, k)v = a(`, k)v with a(`, k) ∈ F̄p
for all prime ` not dividing pN and all k between 0 and n inclusive. Let
ρ : GQ → GLn(F̄p) be a representation unramified outside pN and assume
that

n∑
k=0

(−1)k`k(k−1)/2a(`, k)Xk = det(I − ρ(Frobl)X)

for all ` not dividing pN . Then we say that ρ is attached to v or that v corre-
sponds to ρ.

Note that in the definition of attached there is no explicit connection between
ρ and v, except that there is a coincidence of eigenvalues and coefficients of the
characteristic polynomial of the Frobenius elements. In addition, in all cases
that we discuss, we will have (N, p) = 1.

2.1.2 Irreducible GLn(Fp)-modules

In place of the weight in Serre’s conjecture we use an irreducible GLn(Fp)-
module. Such modules are parametrized by certain n-tuples of integers.
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Definition 2. An n-tuple (a1, a2, . . . , an) of integers is said to be p-restricted
if 0 ≤ an ≤ p− 2 and 0 ≤ ai − ai+1 ≤ p− 1 for 1 ≤ i < n.

Theorem 3. [9, p. 412] The collection of irreducible GLn(Fp)-modules is in
one-to-one correspondence with the collection of p-restricted n-tuples.

Definition 4. Given a p-restricted n-tuple (a1, . . . , an), we will denote the as-
sociated irreducible GLn(Fp)-module by F (a1, . . . , an).

We will also use an additional notation in stating the conjecture. For an n-
tuple (a1, . . . , an) of integers we will denote by (a1, . . . , an)′ the set of all n-tuples
(b1, . . . , bn) such that (b1, . . . , bn) is p-restricted and bi ≡ ai (mod p−1) for each
i. We note that there may be several n-tuples which satisfy the condition to
be in (a1, . . . , an)′. For example, working modulo 5, (1, 0, 0)′ will contain both
(1, 0, 0) and (5, 4, 0). The set (a1, . . . , an)′ will contain more than one n-tuple
whenever some ai ≡ ai+1 (mod p−1). The main point of this paper is to predict
which elements of (a1, . . . , an)′ will satisfy the conjecture of Ash and Sinnott
in certain cases. We will often denote by F (a1, . . . , an)′ the set of irreducible
modules corresponding to n-tuples in (a1, . . . , an)′.

Definition 5. A resolution of (a1, . . . , an)′ is any n-tuple (b1, . . . , bn) which is
one of the n-tuples contained in (a1, . . . , an)′. A resolution of F (a1, . . . , an)′ is
any module contained in F (a1, . . . , an)′.

2.1.3 Level and nebentype

For a fixed prime q, fix an embedding of GQq → GQ, and let Gq,i be the resulting
lower numbering filtration of ramification subgroups. With this notation, Gq,0
is an inertia group of q, and Gq,i with i > 0 are wild ramification subgroups.
We will often denote Gq,0 by Iq.

Given a Galois representation ρ : GQ → GLn(F̄p), we let M = F̄
n
p be acted

on by GQ via ρ in the natural way. We define gq,i = |ρ(Gq,i)|. Then set

nq =
∞∑
i=0

gq,i
gq,0

dimM/MGq,i .

Note that this sum is finite, since eventually the images under ρ of the rami-
fication groups are trivial. In addition, by the same reasoning used in [15] for
two-dimensional representations, each nq is a nonnegative integer, and nq = 0
for all but finitely many primes q.

Definition 6. With ρ as above, we define the level of ρ to be

N(ρ) =
∏
q 6=p

qnq

where the product runs over all primes q not equal to p.
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To define the nebentype we factor det ρ = ωkε, where ω is the cyclotomic
character modulo p and ε : GQ → F̄

×
p is a character which is unramified at p.

By class field theory, we may consider ε as a character

ε : (Z/N(ρ)Z)× → F̄
×
p

and then pull it back to SN via

SN → (Z/N(ρ)Z)× → F̄
×
p ,

where the first map takes a matrix in SN to its (1,1) entry. We then define Fε
to be the one-dimensional space F̄p considered as an SN -module with the action
given by ε.

Finally, if V is a GLn(Fp)-module we define

V (ε) = V ⊗ Fε.

2.2 The conjecture

We now state a version of the conjecture given by Ash and Sinnott [4]. Note
that their conjecture is stronger than what is stated here, in that it deals not
only with irreducible representations, but also with reducible representations.

Conjecture 7. Let ρ : GQ → GLn(F̄p) be a continuous irreducible representa-
tion such that if p is odd, the image of complex conjugation is conjugate to a
diagonal matrix with alternating 1’s and (−1)’s on the diagonal. Assume that
we can conjugate ρ so that

ρ|Ip =


ωa1 ∗ · · · ∗

ωa2 · · · ∗
. . . ∗

ωan

 .

Let N be the level of ρ and ε the nebentype, as defined above. Then for some
resolution (b1, . . . , bn) of (a1 − (n− 1), a2 − (n− 2), . . . , an−1 − 1, an)′, and

V = F (b1, . . . , bn)

ρ is attached to a cohomology eigenclass in

H∗(Γ0(N), V (ε)).

For evidence supporting this conjecture see [4] and [1]. Note that requiring
ρ|Ip to have powers of the cyclotomic character on the diagonal when upper
triangularized limits us to niveau one Galois representations. Higher niveau
Galois representations are not considered in this paper. In addition, we remark
that for p = 2, there is no condition on the image of complex conjugation.
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3 Refining the conjecture

We now give a refinement of the conjecture. This refinement allows us to pre-
dict which of the several possible weights given by the prime notation actu-
ally yield an eigenclass, rather than making the statement that at least one of
several weights works. The refinement is derived from Serre’s conjecture for
two-dimensional representations and we will computationally test it for three-
dimensional representations.

Let V be an n-dimensional F̄p-vector space and let Ip act on V via ρ. Since
ρ|Ip is upper-triangularizable, we may choose a basis {vi}1≤i≤n with respect to
which ρ has the form stated in the conjecture. Now, since ρ|Ip is upper triangular
with respect to the basis (v1, . . . , vn), Ip acts on the space Vi = span(v1, . . . , vi).
For convenience, we will set V0 to be the subspace of V consisting of only the
zero vector. Now we have an Ip-stable filtration

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V.

Define Wi = Vi+1/Vi−1. Then Ip acts on Wi via ρ, and with respect to a basis
consisting of the images of vi and vi+1 in Wi the action of Ip on Wi is given by
the two-dimensional representation

ρi =
(
ωai ∗
0 ωai+1

)
.

In the case where ai 6≡ ai+1 + 1 (mod p − 1) the prime notation will not give
multiple possibilities for the weights, and Conjecture 5 does not need to be
refined. In the case where ai ≡ ai+1+1 (mod p−1) we distinguish between three
cases: ρi may be tamely ramified, peu ramifiée, or très ramifiée, according to
the definitions of Serre [15, pg. 186]. We then choose an n-tuple (b1, b2, . . . , bn)
which is p-restricted, equal to (a1− (n− 1), a2− (n− 2), . . . , an−1− 1, an)′, and
subject to the condition that

bi − bi+1 =

{
p− 1 if ρi is très ramifiée;
unrestricted if ρi is not très ramifiée.

(1)

Note that the case in which ρi is not très ramifiée includes both the peu ramifiée
case and the case in which ρi is tamely ramified at p. We then replace the
predicted weight(s) in the conjecture, namely

F (a1 − (n− 1), a2 − (n− 2), . . . , an−1 − 1, an)′

by any
F (b1, b2, . . . , bn)

satisfying our more stringent requirement. Our conjecture is then:

Conjecture 8. Let ρ : GQ → GLn(F̄p) be a continuous irreducible representa-
tion such that if p is odd, the image of complex conjugation is conjugate to a
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diagonal matrix with alternating 1’s and (−1)’s on the diagonal. Assume that
we can conjugate ρ so that

ρ|Ip =


ωa1 ∗ · · · ∗

ωa2 · · · ∗
. . . ∗

ωan

 .

Let N be the level of ρ and ε the nebentype, as defined above. Then for those
resolutions (b1, b2, . . . , bn) of (a1−(n−1), a2−(n−2), . . . , an−1−1, an)′ satisfying
condition (1) above, ρ is attached to a cohomology eigenclass in

H∗(Γ0(N), F (b1, . . . , bn)(ε)).

We note [4, pg. 3] that for irreducible three-dimensional ρ we can show that
if ρ is attached to any cohomology eigenclass, then it is attached to an eigenclass
appearing in H3. Hence, in our computational examples we just compute H3

using the techniques of [1, Section 8]. In addition, it is easy to see that for
irreducible two-dimensional ρ the refined conjecture is just the niveau one case
of Serre’s conjecture [15].

4 Computing wild ramification

We will use the following theorem to compute the depth of certain wild ramifi-
cation filtrations:

Theorem 9. Let p be a rational prime and let L/Q be a degree p extension
of number fields with Galois closure K/Q. Suppose that p is wildly ramified in
L/Q. Let n = vp(∆L/Q). Let gp,i be the order of the image of Gp,i in Gal(K/Q)
under the standard projection from GQ to Gal(K/Q). Then there are integers d
and t such that

gp,i =

 pt if i = 0
p if 0 < i ≤ d
1 if i > d

,

with n = (p− 1)(1 + d/t) and (d, t) = 1.

Proof. See [10].

We note that this theorem allows us to determine the depth of the filtration of
wild ramification subgroups just by examining the discriminant of an extension.

We next prove a theorem which indicates a relationship between the depth of
the ramification filtration of the field cut out by a Galois representation and the
type of wild ramification (peu or très ramifiée) occurring in that representation.

Theorem 10. Let Ip be an inertia group above p in GQp and let ρ : Ip →

GL2(Fp) be a wildly ramified continuous representation of the form
(
ωa+1 ∗

ωa

)
.
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Then ρ cuts out a totally ramified Galois extension K of Qnrp . If the ramifica-
tion filtration of K/Qnrp has depth 1, then ρ is peu ramifiée. If the filtration has
depth greater than 1, then ρ is très ramifiée.

Proof. Note that since ρ is wildly ramified, the ∗ in the upper right corner must
be nonzero. Let vK be the valuation of K, normalized so that a uniformizer of
K has valuation 1. Set K0 = Q

nr
p and let Kt be the maximal tamely ramified

subextension of K/K0. Then Kt/K0 has degree p − 1, and we see that Kt =
K0(ζp), where ζp is a primitive pth root of 1. We see easily that the degree
of K/K0 is p(p − 1). Also, from exercise 3 (page 72) of [14], we see that the
depth of the ramification filtration of K/K0 is at most p. The action of tame
ramification on wild ramification [14, IV, §2, Prop. 9] forces the depth of the
filtration to be either 1 or p.

Suppose that K/K0 (and hence ρ) is peu ramifiée. Then from [15] we see
that K = Kt(x1/p) for some x ∈ K0 with vp(x) ≡ 0 (mod p). Multiplying x by
a power of a uniformizer we see that we may take vp(x) = 0. Now vK(x1/p) = 0,
so that for a nonidentity element σ ∈ Gal(K/Kt)

vK(x1/p − σ(x1/p)) = vK(x1/p) + vK(1− ζmp ) = 0 + p = p,

where ζmp = σ(x1/p)/x1/p. Hence, vK(x1/p − σ(x1/p)) < p + 1 so the pth
ramification group of the extension K/K0 is not all of Gal(K/Kt). Therefore,
the pth ramification group is trivial, so the depth of the ramification filtration
of K/K0 is 1.

On the other hand, suppose that K/K0 is très ramifiée. Then K = Kt(x1/p)
for some x ∈ K0 such that vp(x) = n 6≡ 0 (mod p). Choose a positive k < p
such that nk ≡ 1 (mod p), and note that Kt(x1/p) = Kt((xk)1/p). Adjusting
by a pth power of a uniformizer of K0, we may then take x to be a uniformizer
of K0.

We now set π = (1− ζp)p/x ∈ Kt. Note that π is a uniformizer of Kt, and
that Kt(π1/p) = Kt(x1/p). However, by exercise 4(c), pg. 72 of [14], we then
see that the depth of the ramification filtration is p, which is greater than 1.

We note that the combination of Theorems 9 and 10, together with the fact
that an unramified base change does not affect the ramification filtration, allows
us to determine whether ρ is très ramifiée merely by studying the discriminant
of the extension cut out by ρ. We will give a number of examples. Note that all
number field calculations in the examples which follow were carried out using
the GP/PARI software package [17].

5 A tamely ramified example

Let K = Q(α), where α is a root of the polynomial x4 − x3 + 6x2 − 6x+ 1, and
let L be the Galois closure of K. Then Gal(L/Q) ∼= S4, and we note that L/Q
is ramified at 5 with ramification index 4, and at 103 with ramification index
2. One sees easily that the inertia group at 103 is generated by a two-cycle.
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Let ϕ be the three-dimensional mod 5 representation of S4 over F5 for which
transpositions have trace 1. We may then define ρ to be the composition of the
canonical projection GQ → Gal(L/Q) ∼= S4 and ϕ. We see that since four-cycles
have trace −1,

ρ|I5 ∼

ω3

ω2

ω1

 .

The level of ρ is 103 and the nebentype is the quadratic character ε103 ramified
only at 103 (since the inertia at 103 is generated by a transposition). Our
conjecture predicts weights of F (1, 1, 1)′ and, since there is no wild ramification
(hence neither ρi is très ramifiée), we predict that all four resolutions should
work. In fact, computations in weights F (1, 1, 1), F (5, 1, 1), F (5, 5, 1), and
F (9, 5, 1) show that (at least for ` < 50) the correct eigenvalues of T (`, 1) and
T (`, 2) exist in the appropriate cohomology group.

We may also adjust the order of the characters on the diagonal of ρ. Hence
we have

ρ|I5 ∼

ω1

ω3

ω2

 and ρ|I5 ∼

ω2

ω1

ω3

 ,

yielding predicted weights of F (3, 2, 2)′ and F (0, 0, 3)′. The resolutions of F (3, 2, 2)′

are F (3, 2, 2) and F (7, 6, 2), and the resolutions of F (0, 0, 3)′ are F (4, 4, 3) and
F (8, 4, 3). Since there is no wild ramification the revised conjecture predicts
that in both cases, both predicted weights should work. In fact, computations
show that these four weights all yield cohomology eigenclasses with the correct
eigenvalues (for ` < 50) to have ρ attached.

Other permutations of the diagonal characters yield three more predictions
for weights, namely F (4, 2, 1), F (5, 4, 2), and F (7, 5, 3), none of which involve
the ambiguity in which we are interested. Computations show that these weights
also yield cohomology eigenclasses with the correct eigenvalues (for ` < 50) to
have ρ attached.

6 Computational examples with image isomor-
phic to S5

We begin by exhibiting a subgroup of GL3(F5) which is isomorphic to S5. This
subgroup is generated by

A =

1 1 0
0 1 1
0 0 1

 , B =

2 4 0
0 1 3
0 0 3

 , C =

0 2 3
4 4 1
4 0 3


We note that A and B satisfy the relations A5 = B4 = I and BAB−1 = A2,
so that A and B generate a Frobenius group of order 20. In addition, S5 is
isomorphic to the subgroup of GL3(F5) generated by A, B, and C, so we may
define an injection ϕ : S5 → GL3(F5) via this isomorphism.
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Let f(x) ∈ Z[x] be an irreducible degree five polynomial with Galois group
S5. Let α ∈ C be a root of f , let K = Q(α), and let L be a splitting field of f
over Q. We then get a continuous homomorphism

ρ : GQ → Gal(L/Q) ∼= S5
ϕ−→GL3(F5).

Assume now that L/Q is wildly ramified at 5. Then, up to conjugation, the
image of an inertia group above 5 is contained in the subgroup of GL3(F5)
generated by A and B. By choosing the appropriate place above 5 we eliminate
the ambiguity and say that the subgroup generated by A and B contains the
image of inertia.

Suppose now that the inertia group above 5 in L/Q has order 20. Then it
is a Frobenius group generated by σ of order 4 and τ of order 5 (where σ and
τ correspond respectively to B and A), with 〈τ〉 C 〈σ, τ〉. Hence, στσ−1 = τk

for some integer k. If we let d be the depth of the ramification filtration, we
see easily [14, 10] that στσ−1 = τω(σ)d . Now since BAB−1 = A2, we see that
ω(σ)d = 2. We then note that

ρ|I5 ∼

ωd ∗ ∗
1 ∗

ω−d

 .

There are now three cases possible. We could have d = 1, 3, or 5. If d = 1
or 5, then the conjecture of Ash and Sinnott predicts that at least one of the
resolutions of F (−1,−1,−1)′ = F (3, 3, 3)′ will work, or in other words, that
at least one of the four weights F (3, 3, 3), F (7, 3, 3), F (7, 7, 3) and F (11, 7, 3)
will yield the correct eigenvalues. On the other hand, if d = 3, the conjecture
predicts a weight of F (1,−1, 1)′ = F (5, 3, 1). Note that in the d = 3 case there
is no ambiguity in the weight.

Now, in the d = 1 or 5 cases we need to examine the local subrepresentations.
Let ρ1 and ρ2 be the two representations described in section 3 constructed from
ρ. Then we see that

ρ1(τ) =
(

1 1
1

)
, ρ1(σ) =

(
2 4

1

)
and

ρ2(τ) =
(

1 1
1

)
, ρ2(σ) =

(
1 3

3

)
.

Hence, we see that the image of inertia under both ρ1 and ρ2 has order 20.
Further, it is easy to see that ker ρ|I5 ⊆ ker ρi, so that the fixed field of ρi is
contained in the fixed field of ρ|I5 . From these two facts we may deduce that the
ramification filtration of ρi is identical to that of ρ and, in fact, is identical to the
filtration of ramification subgroups in L/Q. This filtration is easy to compute
by Theorem 9. If the discriminant of K is exactly divisible by 55 then d = 1, and
each ρi is peu ramifiée. If the discriminant of K is divisible by 59 then d = 5 and
each ρi is très ramifiée. In the peu ramifiée case the refined conjecture predicts
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that all four of the weights F (3, 3, 3), F (7, 3, 3), F (7, 7, 3) and F (11, 7, 3) should
contain eigenvalues corresponding to ρ. In the très ramifiée case the only one
of these weights that should contain the correct eigenvalues is F (11, 7, 3). We
proceed to give examples of each of these cases.

Example 11. Let f(x) = x5 − 80x + 160 ∈ Q[x], let α be a root of f , and
let K = Q(α). The discriminant of K/Q is 5541 and the Galois group of f is
S5. Hence, f yields an S5-extension as above with d = 1. One checks easily
that the level associated to ρ is 412, and the nebentype is trivial. This level
is too large to allow us to compute the relevant cohomology, so we twist ρ by
the quadratic character ε41 ramified only at 41. Then ρ ⊗ ε41 has level 41 and
nebentype ε41. Note that since ε41 is trivial on inertia at 5 this twist does
not affect the predicted weights. Hence, eigenvalues corresponding to ρ should
exist in the cohomology in the four weights predicted above. Computation with
these weights, level 41, and nebentype ε41 shows that (at least for ` < 50), these
eigenvalues do appear.

Example 12. Let f(x) = x5−25x2 + 55, let α be a root of f , and let K = Q(α).
Then the discriminant of K/Q is −5911, so that d = 5 and we are in the
très ramifiée case. The level of ρ is easily seen to be 112, and its nebentype
is trivial. Twisting as above, we see that ρ ⊗ ε11 has level 11 and nebentype
ε11. The refined conjecture then indicates that the correct eigenvalues should
appear in the cohomology with weight F (11, 7, 3), level 11, and nebentype ε11,
but not in the cohomology for the other weights permitted by Ash and Sinnott.
Computation shows that (for ` < 50) this is the case.

In Table 1 we give several examples of Galois representations, along with
cohomology calculations that support the conjecture. Most of the polynomials
defining these representations were obtained from the online tables of Jones and
Roberts [12]. Each row of the table contains a quintic polynomial defining an
S5-extension of Q. The Galois representations that we study are constructed
as above, by composing the natural projection of GQ onto S5 defined by the
polynomial with the given three-dimensional representation. In some cases, the
level of this Galois representation is lowered by twisting by a character, as in
Example 9. In all such cases, the nebentype of the twisted representation is the
same as the character by which the representation was twisted—this character
is indicated in the column labeled ε(ρ). The discriminant of the S5-extension
(which allows us to predict the weights) and the level of the final Galois repre-
sentation are also indicated. Finally, we list the weights predicted by the refined
conjecture. With four exceptions (each denoted by an asterisk), computations
show that all the weights listed in the table work; namely, in that cohomology
with that weight and the corresponding level and nebentype the appropriate
eigenvalues exist (for ` < 50) to correspond to the given Galois representation.
The exceptions are not counterexamples to the conjecture—they are merely
examples for which the size of the cohomology calculations exceeded our avail-
able computer resources. We include them because the weights with which we
were able to calculate give additional evidence that the smaller resolution of the
prime notation does work in the peu ramifiée case. We note also that in the très
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∆K N(ρ) ε(ρ) Weights Defining polynomial
5541 41 ε41 F (3, 3, 3), F (7, 3, 3) x5 − 80x+ 160

F (7, 7, 3), F (11, 7, 3)
5573 73 ε73 F (3, 3, 3), F (7, 3, 3) x5 + 40x+ 5

F (7, 7, 3), F (11, 7, 3)
55133 132 1 F (3, 3, 3), F (7, 3, 3) x5 + 5x3 − 15x2 − 15x− 49

F (7, 7, 3), F (11, 7, 3)∗

55174 172 1 F (3, 3, 3), F (7, 3, 3)∗ x5 − 85x− 153
F (7, 7, 3)∗, F (11, 7, 3)∗

5922 22 1 F (11, 7, 3) x5 + 25x− 10
5934 32 1 F (11, 7, 3) x5 + 75x+ 105
5972 7 ε7 F (11, 7, 3) x5 − 100x2 − 100x− 55
5974 72 1 F (11, 7, 3) x5 − 175x2 − 1050x− 3640
−5911 11 ε11 F (11, 7, 3) x5 − 25x2 + 55
59172 17 ε17 F (11, 7, 3) x5 − 50x2 + 100x− 65

Table 1: S5-representations with predicted weights and levels

ramifiée cases weights permitted by the conjecture of Ash and Sinnott, but not
predicted by the refined conjecture, do not yield eigenvalues corresponding to
the given representation.

7 Computational examples arising from elliptic
curves

Three-dimensional Galois representations can also be obtained as adjoint repre-
sentations of torsion-point representations on elliptic curves. We do one example
in detail and specify the curve and computational results for several other ex-
amples.

Let E be the elliptic curve defined by the equation

y2 + xy = x3 − 4x− 1.

This curve has conductor 21 [6]. Let ϕ : GQ → GL2(F7) be a seven-division-
point representation, and let L/Q be the fixed field of ϕ. We note that E has
multiplicative reduction at both 3 and 7, hence, by [8, Prop. 2.12] and [16,
Prop. V.6.1], we see that

ϕ|I7 ∼
(
ω ∗

1

)
and

ϕ|I3 ∼
(

1 ∗
1

)
,

and that for both restrictions the ∗ in the upper right corner is nonzero. (Note
that the seventh cyclotomic character is trivial on I3 [8, pg. 44].)
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Further, by [13, Cor. 1, pg. 308] we see that the image of ϕ is isomorphic
to all of GL2(F7).

We now let ρ = Ad0(ϕ). Then ρ : GQ → GL3(F7) is a Galois representation,
and the image of ρ is easily seen to be isomorphic to PGL2(F7).

We have that

ρ|I7 ∼

ω ∗ ∗
1 ∗

ω−1


and

ρ|I3 ∼

1 ∗ ∗
1 ∗

1


One then checks easily that the level predicted for ρ is 32 = 9 and its

nebentype is trivial.
Finally, we see that the predicted weight for ρ is F (1 − 2, 0 − 1,−1)′ =

F (5, 5, 5)′. The conjecture of Ash and Sinnott then predicts that at least one of
the four weights

F (5, 5, 5), F (11, 5, 5), F (11, 11, 5), F (17, 11, 5)

will yield an eigenclass corresponding to ρ. We now need to determine which of
these weights are predicted by the refined conjecture.

We note that ϕ|I7 must be très ramifiée, by [8, Prop 2.12(d)] and the fact
that v7(jE) = −2 is not divisible by 7. Each of the subrepresentations ρ1 and
ρ2 can be seen to have the same kernel as the restriction of ϕ to inertia, so
each of them must also be très ramifiée. Hence, we see that the only predicted
weight for ρ is the weight with the larger resolution in both positions, namely
F (17, 11, 5).

Computation shows that in weight F (17, 11, 5), level 9, and trivial neben-
type, there is a unique eigenclass having the correct eigenvalues (for ` < 50).
On the other hand, in the other three weights no such eigenclass exists. Hence,
the refinement of the conjecture of Ash and Sinnott is justified in this case.

Other examples in which similar computations work are the curves of conduc-
tor 33 and 39. These yield three-dimensional representations of level 9 modulo
11 and modulo 13 for which both ρ1 and ρ2 are très ramifiée. As above, only
one of the four predicted weights yields an eigenclass with the correct eigen-
values, and in each case it is the one predicted by the refined conjecture. In
the case of the representation modulo 11, the conjecture of Ash and Sinnott
predicts the weights F (9, 9, 9)′ and the refined conjecture predicts the weight
F (29, 19, 9). Computation shows that the only resolution of F (9, 9, 9)′ which
yields the correct eigenvalues is F (29, 19, 9). In the case of the representation
modulo 13, the predicted weights are F (11, 11, 11)′, the refined conjecture pre-
dicts that only F (35, 23, 11) will work, and the only resolution which yields the
correct eigenvalues is F (35, 23, 11).

One may also construct similar examples which are peu ramifiée by using
elliptic curves with good ordinary reduction at p. As examples, we begin with
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the elliptic curve E defined by y2 + y = x3 − x2 − 10x − 20 of conductor 11
[6]. We choose a prime p > 5 for which E has good ordinary reduction and let
ϕ : GQ → GL2(Fp) be the p-division point representation. Then by [8, Prop.
2.11(c)],

ϕ|Ip ∼
(
ω ∗

1

)
.

Further, E has multiplicative reduction at 11, so we see, as above, that

ϕ|I11 ∼
(

1 ∗
1

)
,

with the ∗ nonzero. If we now let ρ = Ad0(ϕ), then we see, as above, that

ρ|Ip ∼

ω ∗ ∗
1 ∗

ω−1

 ,

and that both subrepresentations ρ1 and ρ2 are peu ramifiée, since ϕ is. Hence,
the predicted weights for ρ are all the resolutions of F (−1,−1,−1)′, or in other
words

F (p−2, p−2, p−2), F (2p−3, p−2, p−2), F (2p−3, 2p−3, p−2), F (3p−4, 2p−3, p−2).

As in the previous examples, the level of ρ is easily seen to be 112, and the
nebentype is trivial. Hence, we wish to find an eigenclass with the appropriate
eigenvalues in H3(Γ0(112), V ), where V is any one of the four weights given
above.

The curve E has good ordinary reduction at the primes 7, 13, and 17. For
p = 7, we have checked computationally that the correct eigenvalues (for ` < 50)
to correspond to ρ appear in weights F (5, 5, 5), F (11, 5, 5), and F (11, 11, 5). The
other predicted weight, F (17, 11, 5) is to large for us to work with. For p = 13
and p = 17, we have checked computationally that the correct eigenvalues (for
` < 50) to correspond to ρ appear in weight F (p− 2, p− 2, p− 2), and the other
weights are too large for us to work with. Nevertheless, these computations give
evidence that in the peu ramifiée case at least the smallest of the resolutions
works, as predicted by the refined conjecture. We remark that choosing p = 5
would have yielded a reducible representation [7, pg. 140], to which the refined
conjecture would not apply.

We note that using the main theorem of [11], one could prove that the ρ
derived here as symmetric squares of torsion point representations of elliptic
curves are in some sense modular. However, it is not clear how to use this
to prove the correspondence described by the refined conjecture. In [5] cer-
tain symmetric square representations are shown to be attached to cohomology
eigenclasses, but the cases dealt with there are level 1 representations, and the
examples given here have higher level. Hence, proving that these symmetric
square representations are attached to the given cohomology eigenclasses seems
to be nontrivial.
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8 Conclusion

In many cases, Ash and Sinnott predict that one of several predicted weights
yields a cohomology eigenclass attached to a certain Galois representation. All
the computational evidence to date supports this conjecture fully. In addition,
we have presented computational evidence that the refinement to Ash and Sin-
nott’s original conjecture described in this paper correctly predicts which of
these several weights actually do give rise to the correct systems of eigenvalues.
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[11] Stephen Gelbart and Hervé Jacquet. A relation between automorphic repre-
sentations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4), 11(4):471–
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