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Summary of earlier meetings & problem sets with old (pre 1984) & new numbering.

1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar 99:01–99:12
2000 San Diego 000:01–000:15 2001 Asilomar 001:01–001:23
2002 San Francisco 002:01–002:24 2003 Asilomar (current set) 003:01–003:08
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Comments on earlier problems

002:18 (Neville Robbins) For p prime, let f(p) = p−1
2 − φ(p − 1), so f(p) is the number

of quadratic non-residues that aren’t primitive roots. Are there infinitely many positive
integers r such that f(p) = r has no solution?

Solution: (Florian Luca and Gary Walsh) Yes. In fact, for all k ≥ 0, tk = 3 × 24k+3

is not of the form f(p) = (p − 1)/2 − φ(p − 1) for any odd prime p.
Proof: Let p be any odd prime, and write p as p = 1 + (2a)m, with m odd and a > 0.

Assume that tk = f(p). It follows that tk = 2a−1(m − φ(m)). Since f(p) = tk > 0, it
follows that m > 1, and so m−φ(m) must be odd. This forces a = 4k+4 and m−φ(m) = 3.
But m − φ(m) = 3 implies that m = 9, and therefore p = 1 + 9 × 24k+4, which is always
divisible by 5, contradicting the assumption that p is prime. Therefore tk = f(p) is not
possible.

More generally, Luca and Walsh can prove that for each odd w > 1, there are infinitely
many t for which (2t)w is not of the form f(p) for any prime p.

Problems Proposed 18 & 20 Dec 2003

003:01 (Neville Robbins) Let p(n) be the partition function. Is it true that for n ≥ 2 the
number of distinct degree sequences of trees with n nodes is p(n − 2)?

Solution: (Greg Martin) Yes. A tree with n nodes has n − 1 edges, so the degrees
of the nodes add up to 2n − 2. Thus if the degree sequence is d1 ≥ d2 ≥ . . . ≥ dn, then
(d1 − 1) + (d2 − 1) + . . . + (dn − 1) = n − 2 is a partition of n − 2.

Going the other way, let a1 + a2 + . . . + ar = n − 2 be a partition of n − 2, with
a1 ≥ a2 ≥ . . . ≥ ar ≥ 1. Then we construct a tree with degree sequence a1 + 1, a2 + 1,
. . ., ar + 1, 1, 1, . . . , 1, where the number of 1s is n − r, as follows. First draw a path with
r nodes, labeling them v1, v2, . . . , vr. Draw n − r isolated nodes. For i from 1 to r draw
an edge from vi to enough of the (formerly) isolated nodes to raise the degree of vi to
ai +1; don’t connect any isolated node to more than one path node. There are just enough
isolated nodes to go around, and the result is a tree on n nodes with the given degree
sequence.

The two maps between degree sequences and partitions are inverse to each other, so
the cardinalities are equal.

Solution: (David Moulton) The degree sequence d1 ≥ d2 ≥ . . . ≥ dn of a tree with
n nodes gives a partition d1 +d2 + . . .+dn = 2n−2 of 2n−2 with n parts. Conversely, we
prove by induction on n that every partition of 2n − 2 into n parts is a degree sequence.
The case n = 2 is trivial. Suppose then a1 +a2 + . . .+an = 2n−2 with a1 ≥ a2 ≥ . . . ≥ an

and n ≥ 3. Then a1 > 1 and an = 1. Then (a1 − 1) + a2 + . . . + an−1 = 2n − 4 is a
partition of 2n−4 into n−1 parts. By the induction hypothesis, there is a tree with degree
sequence a1 − 1, a2, . . . , an−1. Add a leaf to the node of degree a1 − 1, and you have a tree
on n nodes with degree sequence a1, a2, . . . , an.

Thus the number of degree sequences is the number of partitions of 2n−2 into n parts.
By subtracting 1 from each part we see this is p(n − 2).

2



003:02 (Peter Montgomery) Let k be an integer, k ≥ 2. Let S = { 1, 2, . . . , k }. Select
random subsets S1, S2, . . ., of S. Let pn,k be the probability that S1, . . . , Sn generate all
the subsets of S under union, intersection, and complementation, but S1, . . . , Sn−1 don’t.
Find the generating function fk(x) =

∑∞
n=0 pn,kxn.

Remarks: 1. If N has k distinct prime factors then pn,k is the probability that the
General Number Field Sieve will need exactly n dependencies to factor N .

2. f2(x) = x/(2 − x), f3(x) = 3x2/(4 − x)(2 − x).

003:03 (Jim Hafner) Let q be a prime power. Let β be an element of order n in GF(q),
β �= 0. Let V (β) be the matrix with entries vij = βij , i = 0, . . . , n − 1, j = 0, . . . , n − 1.
For m = 1, . . . , n let Wm be the set of n×m submatrices of V (β), that is, matrices formed
from m columns of V (β). For W in Wm let r(β, W ) be the smallest integer r such that
every n × (n + r) submatrix of (In|W ) has rank n (here (In|W ) is the matrix obtained
by augmenting the n × n identity matrix by W ). Find r(β, m) = maxW r(β, W ), and
characterize those W for which r(β, W ) = r(β, m).

Remark: If q = 23, n = 7, and β is any non-zero element of GF(q) then r(β, m) = 0
if 1 ≤ m ≤ 3, r(β, m) = 1 if 4 ≤ m ≤ 7, and W can be chosen as the first m columns
of V (β).

003:04 (Tsz Ho Chan) Is it true that
∣
∣∑

n≤x

(n(n+1)
p

)∣
∣ � √

p for some x? More generally,

is it true that if f(x) is in Z[x] then
∣
∣∑

n≤x

( f(n)
p

)∣
∣ � √

p for some x? Here p is a prime
and

(
a
p

)
is the Legendre symbol.

Remark: It is known that
∣
∣∑

n≤x

(
n
p

)∣
∣ � √

p for some x.

003:05 (Kevin O’Bryant) Given integers x and q write |x|q for the distance from x to the
nearest multiple of q, that is, |x|q = min{ |x − qn| : n in Z }. For x relatively prime to q
write x′ for the inverse of x (mod q). Conjecture: if x1, . . . , xm are relatively prime to q
and |xr|q �= |xs|q for r �= s, and if q > q0(m), then there is a j in {x′

1, . . . , x
′
m } such that∑m

k=1
1

|jxk|q < 2.

Solution: (Greg Martin) It suffices to show that under the hypotheses there exists k,
1 ≤ k ≤ m, such that |x′

kxi|q ≥ (q − 1)1/m for all i, 1 ≤ i ≤ m, i �= k. For if this is true
then choosing j = x′

k gives
∑m

i=1
1

|jxi|q < 1 + (m − 1)/(q − 1)1/m ≤ 2 for q > (m − 1)m.

So suppose to the contrary for each k, 1 ≤ k ≤ m, there exists i, 1 ≤ i ≤ m, i �= k,
with |x′

kxi|q < (q − 1)1/m. Form the directed graph on vertices { 1, 2, . . . , m } with an arc
from k to i if i �= k and |x′

kxi|q < (q − 1)1/m. Then each vertex has outdegree at least 1,
so the graph has a cycle. Relabeling, if necessary, we may assume the cycle joins 1 to 2, 2
to 3, . . ., r − 1 to r, and r to 1, for some r.

Now let x′
1x2 ≡ b1 (mod q), x′

2x3 ≡ b2 (mod q), . . ., x′
rx1 ≡ br (mod q), with

1 < |bi| < (q−1)1/m for 1 ≤ i ≤ r. Then b1× . . .× br ≡ x′
1x2x

′
2x3 . . . x′

rx1 ≡ 1 (mod q), so
|b1×. . .×br| ≡ ±1 (mod q). But 1 < |b1|×. . .×|br| <

(
(q−1)1/m

)r ≤ q−1, contradiction.
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003:06 (David Bailey) Find an analytic evaluation of α =
∫ ∞
0

cos 2x
(∏∞

n=1 cos x
n

)
dx.

Remark: α agrees with π/8 to 43 decimals, but α �= π/8.

003:07 (Peter Borwein) Suppose that n is even, n > 12. Let

pn(z) = n + 1 + (−1)n/2

n/2∑

k=−n/2,k �=0

z2k.

Show that znpn(z) is irreducible over the rationals.

003:08 (David Angell via Gerry Myerson) Find a closed form for
∑∞

n=1
φ(n)
2n , where φ is

Euler’s function.
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