Western Number Theory Problems, 18 \& 20 Dec 2003

Edited by Gerry Myerson
for distribution prior to 2004 (Las Vegas) meeting

Summary of earlier meetings \& problem sets with old (pre 1984) \& new numbering.

1967 Berkeley	1968 Berkeley	1969 Asilomar	
1970 Tucson	1971 Asilomar	1972 Claremont	72:01-72:05
1973 Los Angeles	73:01-73:16	1974 Los Angeles	74:01-74:08
1975 Asilomar	75:01-75:23		
1976 San Diego	1-65 i.e.,	-76:65	
1977 Los Angeles	101-148 i.e.,	-77:48	
1978 Santa Barbara	151-187 i.e.,	-78:37	
1979 Asilomar	201-231 i.e.,	-79:31	
1980 Tucson	251-268 i.e.,	-80:18	
1981 Santa Barbara	301-328 i.e.,	-81:28	
1982 San Diego	351-375 i.e.,	-82:25	
1983 Asilomar	401-418 i.e.,	-83:18	
1984 Asilomar	84:01-84:27	1985 Asilomar	85:01-85:23
1986 Tucson	86:01-86:31	1987 Asilomar	87:01-87:15
1988 Las Vegas	88:01-88:22	1989 Asilomar	89:01-89:32
1990 Asilomar	90:01-90:19	1991 Asilomar	91:01-91:25
1992 Corvallis	92:01-92:19	1993 Asilomar	93:01-93:32
1994 San Diego	94:01-94:27	1995 Asilomar	95:01-95:19
1996 Las Vegas	96:01-96:18	1997 Asilomar	97:01-97:22
1998 San Francisco	98:01-98:14	1999 Asilomar	99:01-99:12
2000 San Diego	000:01-000:15	2001 Asilomar	001:01-001:23
2002 San Francisco	002:01-002:24	2003 Asilomar (cu	nt set) 003:01-003:08

COMMENTS ON ANY PROBLEM WELCOME AT ANY TIME

Department of Mathematics, Macquarie University,
NSW 2109 Australia
gerry@math.mq.edu.au
Australia-2-9850-8952 fax 9850-8114

002:18 (Neville Robbins) For p prime, let $f(p)=\frac{p-1}{2}-\phi(p-1)$, so $f(p)$ is the number of quadratic non-residues that aren't primitive roots. Are there infinitely many positive integers r such that $f(p)=r$ has no solution?

Solution: (Florian Luca and Gary Walsh) Yes. In fact, for all $k \geq 0, t_{k}=3 \times 2^{4 k+3}$ is not of the form $f(p)=(p-1) / 2-\phi(p-1)$ for any odd prime p.

Proof: Let p be any odd prime, and write p as $p=1+\left(2^{a}\right) m$, with m odd and $a>0$. Assume that $t_{k}=f(p)$. It follows that $t_{k}=2^{a-1}(m-\phi(m))$. Since $f(p)=t_{k}>0$, it follows that $m>1$, and so $m-\phi(m)$ must be odd. This forces $a=4 k+4$ and $m-\phi(m)=3$. But $m-\phi(m)=3$ implies that $m=9$, and therefore $p=1+9 \times 2^{4 k+4}$, which is always divisible by 5 , contradicting the assumption that p is prime. Therefore $t_{k}=f(p)$ is not possible.

More generally, Luca and Walsh can prove that for each odd $w>1$, there are infinitely many t for which $\left(2^{t}\right) w$ is not of the form $f(p)$ for any prime p.

Problems Proposed 18 \& 20 Dec 2003

003:01 (Neville Robbins) Let $p(n)$ be the partition function. Is it true that for $n \geq 2$ the number of distinct degree sequences of trees with n nodes is $p(n-2)$?

Solution: (Greg Martin) Yes. A tree with n nodes has $n-1$ edges, so the degrees of the nodes add up to $2 n-2$. Thus if the degree sequence is $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$, then $\left(d_{1}-1\right)+\left(d_{2}-1\right)+\ldots+\left(d_{n}-1\right)=n-2$ is a partition of $n-2$.

Going the other way, let $a_{1}+a_{2}+\ldots+a_{r}=n-2$ be a partition of $n-2$, with $a_{1} \geq a_{2} \geq \ldots \geq a_{r} \geq 1$. Then we construct a tree with degree sequence $a_{1}+1, a_{2}+1$, $\ldots, a_{r}+1,1,1, \ldots, 1$, where the number of 1 s is $n-r$, as follows. First draw a path with r nodes, labeling them $v_{1}, v_{2}, \ldots, v_{r}$. Draw $n-r$ isolated nodes. For i from 1 to r draw an edge from v_{i} to enough of the (formerly) isolated nodes to raise the degree of v_{i} to $a_{i}+1$; don't connect any isolated node to more than one path node. There are just enough isolated nodes to go around, and the result is a tree on n nodes with the given degree sequence.

The two maps between degree sequences and partitions are inverse to each other, so the cardinalities are equal.

Solution: (David Moulton) The degree sequence $d_{1} \geq d_{2} \geq \ldots \geq d_{n}$ of a tree with n nodes gives a partition $d_{1}+d_{2}+\ldots+d_{n}=2 n-2$ of $2 n-2$ with n parts. Conversely, we prove by induction on n that every partition of $2 n-2$ into n parts is a degree sequence. The case $n=2$ is trivial. Suppose then $a_{1}+a_{2}+\ldots+a_{n}=2 n-2$ with $a_{1} \geq a_{2} \geq \ldots \geq a_{n}$ and $n \geq 3$. Then $a_{1}>1$ and $a_{n}=1$. Then $\left(a_{1}-1\right)+a_{2}+\ldots+a_{n-1}=2 n-4$ is a partition of $2 n-4$ into $n-1$ parts. By the induction hypothesis, there is a tree with degree sequence $a_{1}-1, a_{2}, \ldots, a_{n-1}$. Add a leaf to the node of degree $a_{1}-1$, and you have a tree on n nodes with degree sequence $a_{1}, a_{2}, \ldots, a_{n}$.

Thus the number of degree sequences is the number of partitions of $2 n-2$ into n parts. By subtracting 1 from each part we see this is $p(n-2)$.

003:02 (Peter Montgomery) Let k be an integer, $k \geq 2$. Let $S=\{1,2, \ldots, k\}$. Select random subsets S_{1}, S_{2}, \ldots, of S. Let $p_{n, k}$ be the probability that S_{1}, \ldots, S_{n} generate all the subsets of S under union, intersection, and complementation, but S_{1}, \ldots, S_{n-1} don't. Find the generating function $f_{k}(x)=\sum_{n=0}^{\infty} p_{n, k} x^{n}$.

Remarks: 1 . If N has k distinct prime factors then $p_{n, k}$ is the probability that the General Number Field Sieve will need exactly n dependencies to factor N.
2. $f_{2}(x)=x /(2-x), f_{3}(x)=3 x^{2} /(4-x)(2-x)$.

003:03 (Jim Hafner) Let q be a prime power. Let β be an element of order n in GF (q), $\beta \neq 0$. Let $V(\beta)$ be the matrix with entries $v_{i j}=\beta^{i j}, i=0, \ldots, n-1, j=0, \ldots, n-1$. For $m=1, \ldots, n$ let W_{m} be the set of $n \times m$ submatrices of $V(\beta)$, that is, matrices formed from m columns of $V(\beta)$. For W in W_{m} let $r(\beta, W)$ be the smallest integer r such that every $n \times(n+r)$ submatrix of $\left(I_{n} \mid W\right)$ has rank n (here $\left(I_{n} \mid W\right)$ is the matrix obtained by augmenting the $n \times n$ identity matrix by W). Find $r(\beta, m)=\max _{W} r(\beta, W)$, and characterize those W for which $r(\beta, W)=r(\beta, m)$.

Remark: If $q=2^{3}, n=7$, and β is any non-zero element of $\operatorname{GF}(q)$ then $r(\beta, m)=0$ if $1 \leq m \leq 3, r(\beta, m)=1$ if $4 \leq m \leq 7$, and W can be chosen as the first m columns of $V(\beta)$.

003:04 (Tsz Ho Chan) Is it true that $\left|\sum_{n \leq x}\left(\frac{n(n+1)}{p}\right)\right| \gg \sqrt{p}$ for some x ? More generally, is it true that if $f(x)$ is in $\mathbf{Z}[x]$ then $\left|\sum_{n \leq x}\left(\frac{f(n)}{p}\right)\right| \gg \sqrt{p}$ for some x ? Here p is a prime and $\left(\frac{a}{p}\right)$ is the Legendre symbol.

Remark: It is known that $\left|\sum_{n \leq x}\left(\frac{n}{p}\right)\right| \gg \sqrt{p}$ for some x.
003:05 (Kevin O'Bryant) Given integers x and q write $|x|_{q}$ for the distance from x to the nearest multiple of q, that is, $|x|_{q}=\min \{|x-q n|: n$ in $\mathbf{Z}\}$. For x relatively prime to q write x^{\prime} for the inverse of $x(\bmod q)$. Conjecture: if x_{1}, \ldots, x_{m} are relatively prime to q and $\left|x_{r}\right|_{q} \neq\left|x_{s}\right|_{q}$ for $r \neq s$, and if $q>q_{0}(m)$, then there is a j in $\left\{x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\}$ such that $\sum_{k=1}^{m} \frac{1}{\left|j x_{k}\right|_{q}}<2$.

Solution: (Greg Martin) It suffices to show that under the hypotheses there exists k, $1 \leq k \leq m$, such that $\left|x_{k}^{\prime} x_{i}\right|_{q} \geq(q-1)^{1 / m}$ for all $i, 1 \leq i \leq m, i \neq k$. For if this is true then choosing $j=x_{k}^{\prime}$ gives $\sum_{i=1}^{m} \frac{1}{\left|j x_{i}\right|_{q}}<1+(m-1) /(q-1)^{1 / m} \leq 2$ for $q>(m-1)^{m}$.

So suppose to the contrary for each $k, 1 \leq k \leq m$, there exists $i, 1 \leq i \leq m, i \neq k$, with $\left|x_{k}^{\prime} x_{i}\right|_{q}<(q-1)^{1 / m}$. Form the directed graph on vertices $\{1,2, \ldots, m\}$ with an arc from k to i if $i \neq k$ and $\left|x_{k}^{\prime} x_{i}\right|_{q}<(q-1)^{1 / m}$. Then each vertex has outdegree at least 1 , so the graph has a cycle. Relabeling, if necessary, we may assume the cycle joins 1 to 2,2 to $3, \ldots, r-1$ to r, and r to 1 , for some r.

Now let $x_{1}^{\prime} x_{2} \equiv b_{1}(\bmod q), x_{2}^{\prime} x_{3} \equiv b_{2}(\bmod q), \ldots, x_{r}^{\prime} x_{1} \equiv b_{r}(\bmod q)$, with $1<\left|b_{i}\right|<(q-1)^{1 / m}$ for $1 \leq i \leq r$. Then $b_{1} \times \ldots \times b_{r} \equiv x_{1}^{\prime} x_{2} x_{2}^{\prime} x_{3} \ldots x_{r}^{\prime} x_{1} \equiv 1(\bmod q)$, so $\left|b_{1} \times \ldots \times b_{r}\right| \equiv \pm 1(\bmod q)$. But $1<\left|b_{1}\right| \times \ldots \times\left|b_{r}\right|<\left((q-1)^{1 / m}\right)^{r} \leq q-1$, contradiction.

003:06 (David Bailey) Find an analytic evaluation of $\alpha=\int_{0}^{\infty} \cos 2 x\left(\prod_{n=1}^{\infty} \cos \frac{x}{n}\right) d x$. Remark: α agrees with $\pi / 8$ to 43 decimals, but $\alpha \neq \pi / 8$.

003:07 (Peter Borwein) Suppose that n is even, $n>12$. Let

$$
p_{n}(z)=n+1+(-1)^{n / 2} \sum_{k=-n / 2, k \neq 0}^{n / 2} z^{2 k} .
$$

Show that $z^{n} p_{n}(z)$ is irreducible over the rationals.
003:08 (David Angell via Gerry Myerson) Find a closed form for $\sum_{n=1}^{\infty} \frac{\phi(n)}{2^{n}}$, where ϕ is Euler's function.

