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Comments on earlier problems

006:01 (Claude Anderson, via Carl Pomerance) Is it true that if n is even and m is odd then
σ(n)/n 6= σ(m)/m?

Remark: If so, then there are no odd perfect numbers.
Solution: Walter Nissen points out that Anderson and Dean Hickerson discuss pairs

m and n such that σ(n)/n = σ(m)/m in problem 6020, Amer. Math. Monthly 84 (1977) 65–66.
They give two examples of such pairs of opposite parity, n = 42, m = 544635 = 32 ·5·72 ·13·19,
and n = 2 · 36 · 23 · 137 · 547 · 1093, m = 34 · 5 · 7 · 112 · 19. Many more examples can be
extracted from http://upforthecount.com/math/ffp8.html.

Problems proposed 12, 16, and 18 December 2008
There was a Number Theory problem session at the 7th Joint Australia-New Zealand

Mathematics Convention at the University of Canterbury in Christchurch, New Zealand. The
first seven problems below were presented at that session.

008:01 (John Friedlander) Let f be an irreducible integer-valued polynomial in two variables
with no fixed prime divisor. Make a plausible conjecture as to πf (x), the number of primes
not exceeding x in the range of f . Similarly, let f and g be integer-valued polynomials in
three variables such that there is no trivial reason why they can’t be simultaneously prime
infinitely often, and with infinitely many different prime values. Make a plausible conjecture
as to the number of pairs of primes, neither exceeding x, in the range of the ordered pair (f, g).

Remark: Let f1, . . . , fm be distinct irreducible polynomials in one variable with integer
coefficients. Let f be their product, and suppose there is no prime p which divides f(n) for
all n. Let P (x) be the number of integer arguments not exceeding x at which all the polyno-
mials are prime. Then Bateman and Horn, “A heuristic asymptotic formula concerning the
distribution of prime numbers,” Math. Comp. 16 (1962) 363–367, MR 26 #6139, conjecture
that

P (x) ∼ (C/D)
∫ x

2

(log t)−m dt, C =
∏
p

1−N(p)/p
(1− 1/p)m

where N(p) is the number of solutions of f(x) ≡ 0 (mod p), and D is the product of the
degrees of the polynomials. What is wanted here is analogous conjectures for polynomials in
two variables, and for pairs of polynomials in three variables.

008:02 (Mike Bennett) Let f(x, y) = x4 + y4, G(u, v) = u4 + 12u2v2 + 4v4. Let PF (resp.,
PG) be the set of primes represented by F (resp., G).

(i) Give plausible asymptotic formulas for #{ p ≤ N : p is in PF } and for
#{ p ≤ N : p is in PG }.

(ii) What is PF ∩ PG?
Remarks: The first question is a special case of 008:01, above. The particular polyno-

mials F and G are of interest in connection with congruent numbers. Concerning the second
question, among the first 300,000 primes in PF , the only one in PG is 17. John Friedlander
suggests checking to see how many numbers up to N (not restricting to primes) are repre-
sented by both F and G (other than numbers of the forms s4 and 17s4). There are such
numbers, e.g.,
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23137 = (17)(1361) = F (7, 12) = G(9, 4)
50881 = (17)(41)(73) = F (4, 15) = G(3, 10)
72097 = (17)(4241) = F (9, 16) = G(11, 6)

32300017 = (17)(257)(7393) = F (39, 74) = G(57, 23)
38241857 = (17)(257)(8753) = F (47, 76) = G(31, 44)

Solution: Jing Long Hoelscher has a proof that PF ∩ PG = { 17 }. Here is an outline.
f(x, y) = N(x+ yζ8), and g(u, v) = N

(
u+ (2 +

√
2)iv

)
, where ζ8 is a primitive complex

8th root of unity and N is the norm from Q(ζ8) to Q. If p is in PF ∩ PG then this yields
two factorizations of (p) into products of four prime ideals. We may assume (x + yζ8) =(
u + (2 +

√
2)iv

)
as ideals (there are other cases which can be dealt with by the same

methods). This can be shown to imply that
(
u + (2 +

√
2)iv

)
/(x + yζ8) is a unit. Then by

Dirichlet’s Unit Theorem,
(
u + (2 +

√
2)iv

)
/(x + yζ8) = (1 +

√
2)aζb

8. Analyzing the eight
possibilities for b leads to p = 17 in one case and to contradictions in all other cases.

Mike Bennett was also able to solve this part of the problem.

008:03 (Kevin Broughan) The odd part of a natural number n is the largest odd number
dividing n. Prove that there are infinitely many primes p such that the odd part of p+ 1 is
prime.

Remark: Of course for each fixed e ≥ 1 it is conjectured that there are infinitely many
primes p such that (p+ 1)/2e is prime. The question is whether letting e vary makes it any
easier to get a proof.

008:04 (Andrew Bremner, via Gary Walsh) Find all rational points on y2 = x6 + k for
k = −39, k = −47.

008:05 (Mike Bennett, via Gary Walsh) Let α = 3 + 2
√

2, and α8 = 665857 + 470832
√

2 =
v + u

√
2. Then v is prime. Let α8v = v′ + u′

√
2. Then v2 | v′. Let N = v′/v2. Is N

composite? Is N a prime times a square?

008:06 (Gary Walsh) Let d and k be relatively prime squarefree positive integers. Let N(d, k)
be the number of solutions of x2−dy4 = k in relatively prime positive integers x and y. Prove
that N(d, k) is bounded independent of d.

Remark: (Patrick Rault) Homogenize the equation to z2x2−dy4 = kz4. Then consider
the related equation xz − dy2 − kz2 = 0 This equation can be parametrized by φ : P1 → P2

given by (u : v) 7→ (dku2 + k2v2 : kuv : du2). So it suffices to count (u : v) in P1(Q) such
that the representation of (dku2 + k2v2 : kuv : du2) as coprime integers is a triple of square
integers.

008:07 (Florian Luca) Let
[n
k

]
F

=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk
where Fj are the Fibonacci numbers,

and let
[n
k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(q − 1)(q2 − 1) · · · (qk − 1)
, q an integer.

(i) Find all solutions of
[n
k

]
F

= y` with n ≥ 2k ≥ 2, ` ≥ 2, y an integer.

(ii) Find all solutions of
[n
k

]
q

= y` with n ≥ 2k ≥ 2, ` ≥ 2, y an integer, q > 1.
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008:08 (Maurizio Monge, via Bart Goddard) Is there a polynomial in two variables which is
a bijection from Z× Z to Z?

Remarks: The question appeared on the NMBRTHRY list on 4 December 2008. It
was also sent to the Usenet newsgroup sci.math by Carlo Mantegazza on 29 November 2008,
with the subject header, Map problem. It is trivial to find a surjection, and not too hard to
find an injection. The problem of finding a polynomial injection from Z4 to Z was studied
by Zachary Abel, My favorite problem: Bert and Ernie, Harvard Coll. Math. Rev. 1 (2007)
78–83.

It is well-known that f(x, y) = (1/2)(x+y)(x+y−1)−y+1 gives a bijection from N×N
to N.

008:09 (Stefan Erickson) Given a finite set S = {x1, . . . , xn } of positive real numbers, find
a closed formula — or, failing that, good asymptotics — for F (x), the number of n-tuples
(a1, . . . , an) of non-negative integers such that a1x1 + . . .+ anxn ≤ X.

Remarks: This has applications to the number of compounds of bounded molecular
weight. It can also be interpreted as the number of lattice points in the region in the positive
orthant cut off by a hyperplane. A reference is Beck and Robins, Computing The Continuous
Discretely, Springer 2007.

008:10 (Ming-Hsuan Kang) Given a finite field Fq, we are interested in the set S of all
polynomials Φ in an indeterminate u with coefficients in Fq(t) such that Φ(f) is in Fq[t] for
all f in Fq[t]. If N = a0 + a1q + . . .+ amq

m for some non-negative integers a0, . . . , am, then
the polynomial

ΦN (u) = ua0

m∏
k=1

(
uqk − u
tqk − t

)ak

has degree N , and ΦN (u) is in S. Do the polynomials ΦN (u) generate S (in the sense that
every member of S is a linear combination of such polynomials, with coefficients in Fq[t])?

Remark: It is well-known that the integer-valued polynomials with rational coefficients
are precisely the integer linear combinations of the polynomials

(
x
k

)
, k = 0, 1, . . .. The question

is an attempt to find for Fq[t] the polynomials analogous to
(
x
k

)
for Z.

Solution: Jianqiang Zhao, after consulting with David Goss, writes that the required
generators are the Carlitz polynomials. He recommends Keith Conrad, “The digit principle,”
J. Number Theory 84 (2000) 230–257, MR 2001i:11143.

008:11 (Patrick Rault) Let f and g be integral binary forms of degree d ≥ 2. An invariant
of weight k on pairs (f, g) of forms is a Q-valued function I such that

I(f ◦ γ, g ◦ γ) = (det γ)kI(f, g)

for all γ in GL2(Z). Find the dimension of the algebra of invariants (or bounds for this
dimension) as a function of d. Better yet, find a basis for each d.

Remarks: A reference is Olver, Classical Invariant Theory. The Hilbert Basis Theorem
guarantees that these algebras are all finite-dimensional, but its proof is not constructive.

4



008:12 (Mike Knapp) Given a finite sequence a1, . . . , an of positive integers with largest
term b, we define aj , j > n, to be the smallest integer exceeding b and not representable as
the sum of a subset of { a1, . . . , aj−1 }. For example, the sequence 1, 5 generates the sequence
1, 5, 7, 9, 11, 29, 31, 89, 91, 269, 271, . . . where the pattern 10× 3k − 1, 10× 3k + 1 that begins
with 9, 11 continues forever. Is it the case that no matter what the given initial terms the
sequence always develops some sort of pattern?

Remarks: A student of Mike’s has settled the cases n = 2 with a1 = 1, also with
a2−a1 = 1. Sunil Chetty asks whether one can always find a1, . . . , an so that the continuation
of the sequence will contain a given pair of terms; also whether two different sequences can
be equal from some point on.

David Terr offered a reformulation of the problem. GivenB = { s1, . . . , sk }, an increasing
finite sequence of positive integers, define sj for j ≥ k by letting si+1 be the least integer
exceeding si and not the sum of a subset of { s1, . . . , si }. Let S(B) be the infinite sequence
s1, s2, . . .. Then the conjecture is that every S(B) is of the form B,P, F0, F1, . . . where
Fk = Φ + abk, a = (1/#F0)

∑
s in F0

s, Φ = F0 − a, and b = #Φ + 1. Here # refers to the
number of terms in a finite sequence, and F0 − a means subtract a from each term in the
sequence F0 (Φ + abk is interpreted similarly). In the example above, P (the “pre-period”)
is { 7 }, F0 = { 9, 11 }, #F0 = 2, a = 10, Φ = {−1, 1 }, and b = 3.

Now let k = #(B), and for i ≥ k let σi =
∑

j≤i sj , and define Gi by

Gi = { g : 0 < g < σi, g is not the sum of any subset of { s1, . . . , si } }

It is claimed that Gi is symmetric about its midpoint. Further it is claimed that the following
conjecture implies an affirmative answer to the original question, and may be easier to settle:
There exist i and j with j > i ≥ k such that Gi = Γ ∪ (σi − Γ) and Gj = Γ ∪ (σj − Γ) where
Γ = Gk ∩ { 1, . . . , σk }.

008:13 (Bart Goddard) Find all interesting functions f : Ω→ C such that for all z in some
domain Ω symmetric with respect to the real line we have |f(z)| = |f(z)|. “Interesting”
means meromorphic in Ω and having a Taylor expansion at some real z0 with at least one
non-real coefficient.

Remark: The conditions permit f(z) = αg(z), where α is in C and g(z) has a Taylor
expansion at some real z0 with all coefficients real, but presumably we want something more
interesting.

Solution: I posted this problem to the Usenet newsgroup sci.math, and received several
helpful replies. This comes from Robert Israel.

f(z)/f(z) is analytic in Ω (except at zeros of f) and has absolute value 1 everywhere,
therefore is constant (and the zeros of f are removable singularities). Say this constant is
eir where r is real, and let g(z) = eir/2f(z). For x in Ω ∩R, we have g(x) = e−ir/2f(x) =
eir/2f(x) = g(x), i.e., g(x) is real. Thus the Taylor series of g(z) about any point of Ω ∩R
has all real coefficients.

008:14 (Mike Knapp) Let p be a prime, let k > 2 be a divisor of p−1. Find upper bounds in
terms of p and k for the smallest m such that { 1k, 2k, . . . ,mk } is the set of all k-th powers
modulo p.

Remark: For k = 2 it’s easy to see that m = (p− 1)/2.
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008:15 (Lenny Fukshansky) A plank in Rn is the region between two parallel hyperplanes.
The width of a plank is the distance between the two hyperplanes. The width w(M) of a
compact set M in Rn is the minimal width of a plank containing M .

Let M1 be a convex set of least width containing M , and let M2 be a convex set of
greatest width contained in M . Suppose that M is covered by a finite set of planks of
widths h1, . . . , hk. Find conditions on M for which one can prove an inequality of the form
h1 + . . .+ hk ≥ f

(
w(M1), w(M2)

)
with f

(
w(M1), w(M2)

)
> w(M2).

Remark: A conjecture of Tarski, proved by Thøger Bang (A solution of the “plank
problem”, Proc. Amer. Math. Soc. 2 (1951) 990–993, MR 13, 769a), asserts that if M is
convex then h1+. . .+hk ≥ w(M). In the problem at hand, this implies h1+. . .+hk ≥ w(M2).
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