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1967 Berkeley 1968 Berkeley 1969 Asilomar
1970 Tucson 1971 Asilomar 1972 Claremont 72:01–72:05
1973 Los Angeles 73:01–73:16 1974 Los Angeles 74:01–74:08
1975 Asilomar 75:01–75:23
1976 San Diego 1–65 i.e., 76:01–76:65
1977 Los Angeles 101–148 i.e., 77:01–77:48
1978 Santa Barbara 151–187 i.e., 78:01–78:37
1979 Asilomar 201–231 i.e., 79:01–79:31
1980 Tucson 251–268 i.e., 80:01–80:18
1981 Santa Barbara 301–328 i.e., 81:01–81:28
1982 San Diego 351–375 i.e., 82:01–82:25
1983 Asilomar 401–418 i.e., 83:01–83:18
1984 Asilomar 84:01–84:27 1985 Asilomar 85:01–85:23
1986 Tucson 86:01–86:31 1987 Asilomar 87:01–87:15
1988 Las Vegas 88:01–88:22 1989 Asilomar 89:01–89:32
1990 Asilomar 90:01–90:19 1991 Asilomar 91:01–91:25
1992 Corvallis 92:01–92:19 1993 Asilomar 93:01–93:32
1994 San Diego 94:01–94:27 1995 Asilomar 95:01–95:19
1996 Las Vegas 96:01–96:18 1997 Asilomar 97:01–97:22
1998 San Francisco 98:01–98:14 1999 Asilomar 99:01–99:12
2000 San Diego 000:01–000:15 2001 Asilomar 001:01–001:23
2002 San Francisco 002:01–002:24 2003 Asilomar 003:01–003:08
2004 Las Vegas 004:01–004:17 2005 Asilomar 005:01–005:12
2006 Ensenada 006:01–006:15 2007 Asilomar 007:01–007:15
2008 Fort Collins 008:01–008:15 2009 Asilomar 009:01–009:20
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Problems proposed 17 and 19 December 2009

009:01 (Vic Dannon) Riemann, quoted on p. 838 of Hawking, ed., God Created the Integers,
writes, “let us use (x) to indicate the excess of x over the next whole number, or, if x is
midway between two values . . . (x) indicates the average of both values 1/2 and −1/2, i.e.,
zero.” Then he lets f(x) =

∑∞
n=1 n

−2(nx) and writes that if x = p/(2n) with p odd then

f(x+ 0) = f(x)− 1

2n2

(
1 +

1

9
+

1

25
+ . . .

)
and f(x− 0) = f(x) +

1

2n2

(
1 +

1

9
+

1

25
+ . . .

)
,

“but otherwise everywhere f(x+ 0) = f(x), f(x− 0) = f(x).”

How does Riemann do this?

Remark: We interpret the definition of (x) to be zero if x = m+(1/2) for some integerm,
otherwise x − n(x), where n(x) is the integer nearest x. We also interpret f(x + 0) (resp.,
f(x − 0)) to mean limy→x+ f(y) (resp., limy→x− f(y)), which we will abbreviate to f(x)+

(resp., f(x)−).

Solution: We take it that what is asked for is a derivation of the displayed formu-
las. We’ll do the first one, as the second follows the same lines. Interchanging limit and
summation, we have

f(x)+ = (x)+ + (1/4)(2x)+ + (1/9)(3x)+ + . . . .

Note that (y)+ = (y) − (1/2) if y is half an odd integer, otherwise (y)+ = (y). Now let
x = p/(2n), so

f
( p

2n

)+
=
( p

2n

)+
+ (1/4)

(
2p

2n

)+

+ (1/9)

(
3p

2n

)+

+ . . . ,

and ( kp
2n )+ = ( kp

2n )− 1
2 if k = rn for some odd r, ( kp

2n ) otherwise. Thus,

f
( p

2n

)+
=
( p

2n

)
+ (1/4)

(
2p

2n

)
+ (1/9)

(
3p

2n

)
+ . . .− 1

2

(
1

n2
+

1

(3n)2
+

1

(5n)2
+ . . .

)
= f

( p

2n

)
− 1

2n2

(
1 +

1

32
+

1

52
+ . . .

)

009:02 (Russell Hendel) LetGn =
∑m

a=1 aiGn−i for some integerm ≥ 1, with ai real. Assume∑∞
G−1i <∞. Let Hn be the nearest integer to

(∑∞
i=nG

−1
i

)−1
(rounding half-integers up).

Let Tn = Hn −
∑m

a=1 aiHn−i.

1. Find conditions under which Tn is periodic.

2. When is there a closed form for Tn?

3. If Tn is bounded, must it be periodic?

Remark: If Gn = c(an+εbn) with a, b, c real, c > 0, −1 < ε < 1, and a > max(|b|, b2, 1),
then Tn is bounded. A reference for related matters is

Ohtsuka and Nakamura, On the sums of reciprocals of Fibonacci numbers, Fib. Q. 46/47 (2008/2009) 153–159.
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009:03 (Neville Robbins) For 1 ≤ k ≤ n, let
〈
n
k

〉
be the number of cyclic equivalence classes

of compositions of n into k parts. E.g.,
〈
6
3

〉
= 4, the four equivalence classes being those

containing 411, 321, 312, and 222.

1. Find a formula for
〈
n
k

〉
.

2. Prove that
〈

n
n−k

〉
=
〈
n
k

〉
for 1 ≤ k ≤ n− 1.

3. Prove
〈
2n
n

〉
is even for all n ≥ 2.

Remarks: It is known that if gcd(k, n) = 1 then
〈
n
k

〉
= 1

n

(
n
k

)
, and that

n−1∑
k=1

〈n
k

〉
= −2 +

1

n

∑
d|n

φ(d)2n/d

Solution:
〈
n
k

〉
counts the number of bracelets with n equally spaced beads, of which k

are white, the others, black, two bracelets being considered identical if one is a rotation of the
other. This solves question 2. A table of the numbers can be found at A047996 in the On-Line
Encyclopedia of Integer Sequences, http://www.research.att.com/˜njas/sequences/index.html
where they are referred to as “circular binomial coefficients.” Many references are given, as
well as the formula,

〈
n
k

〉
= (1/n)

∑
d|gcd(n,k) φ(d)

(
n/d
k/d

)
009:04 (Boris Kupershmidt, via Bart Goddard) Let pn be the nth prime. It is known that
pn+1(1 − p−1n ) > pn for pn > 2. Find the largest α such that pn+1(1 − αp−1n ) > pn for
pn > n0(α).

Solution: Carl Pomerance shows that if α > 2 then the inequality holds for all n
sufficiently large, while if there are infinitely many twin primes then the inequality fails
infinitely often for α = 2.

Proof. Given any ε > 0, we know pn/pn+1 > 1 − ε for all n sufficiently large. Also,
pn+1 − pn ≥ 2 provided pn > 2. So (pn+1 − pn)pn/pn+1 > 2(1 − ε) for n sufficiently large.
This is equivalent to pn+1(1− 2(1− ε)p−1n ) > pn for n sufficiently large. On the other hand,
if pn+1 = pn + 2 then pn+1(1− 2p−1n ) = (pn + 2)(1− 2p−1n ) = pn − 4p−1n < pn.

009:05 (Youssef Fares) Let K be a number field. Let E = {n in N : n = 2kp1p2 . . . pr } where
k ≥ 0 and p1, . . . , pr are distinct prime numbers inert in K. Are there infinitely many n such
that n and n+ 1 are both in E?

009:06 (Youssef Fares) If f(x) in Z[x], considered as a map from Z to Z/prZ, is surjective
for all primes p and all r, then the degree of f is 1. What can one conclude if f is in Z[x, y]
and is surjective for all primes p and all r as a map from Z× Z to Z/prZ?

Remark: If f(x, y) = x+ yg(x, y), with g arbitrary, then f(n, 0) = n, so f is surjective
from Z× Z to Z, hence to Z/prZ. So perhaps one cannot conclude much.

009:07 (David Terr) For positive rational α, let g(α) be the number of terms in the expression
α = a−11 +a−12 +. . .+a−1r of α as a sum of unit fractions obtained by the greedy algorithm (that
is, where each ai is chosen maximal given a1, . . . , ai−1), and let h(α) be the smallest number
of unit fractions summing to α. E.g., the greedy algorithm yields 9/20 = 3−1 + 9−1 + 180−1

so g(9/20) = 3, but 9/20 = 4−1 + 5−1 so h(9/20) = 2.

Let d(N) = N−2#{ (m,n) : 1 ≤ m < n ≤ N, gcd(m,n) = 1, g(m/n) = h(m/n) } (note
that #{ (m,n) : 1 ≤ m < n ≤ N, gcd(m,n) = 1 } = 3π−2N2(1 + o(1))). Does limN→∞ d(N)
exist? If so, what is it? If not, what are lim sup d(N) and lim inf d(N)?
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009:08 (Carl Pomerance) Let F ↑(x) (resp., F ↓(x)) be the size of the largest subset of the
integers in [1, x] on which the Euler phi-function is monotone non-decreasing (resp., non-
increasing).

1. Is it true that F ↑(x) = o(x)?

2. Is it true that F ↑(x)− π(x)→∞?

3. Is it true that F ↓(x) = o(x)?

Remark: It is known that there is a constant c > 0 such that F ↓(x) ≥ xc. A conjecture
of Erdős implies that this holds for every c < 1.

009:09 (Mike Decaro) For a given n, is there an upper bound on k, the number of consecutive
primes for which (

n

pi

)
=

(
n

pi+1

)
= . . . =

(
n

pi+k−1

)
Here

(
n
p

)
is the Legendre symbol.

Remarks: Kjell Wooding notes the following.

1. If n is a square then clearly
(

n
pi

)
=
(

n
pi+1

)
= . . . = 1 provided only that pi exceeds

the greatest prime divisor of n.

2. For any k and any pi, we can use the Chinese Remainder Theorem to construct n

such that
(

n
pi

)
=
(

n
pi+1

)
= . . . =

(
n

pi+k−1

)
.

3. Given n (not a square) and pi, we’d expect
(

n
pi

)
=
(

n
pi+1

)
about half the time,(

n
pi

)
=
(

n
pi+1

)
=
(

n
pi+2

)
about a quarter of the time, and so on. This suggests that there is

no upper bound on k.

Your editor notes that in the case n = −1 we are asking whether there are arbitrarily
long runs of consecutive primes all belonging to the same congruence class modulo 4. Perhaps
then the question is really about primes in collections of arithmetic progressions, and we could
ask it this way: given a modulus m, and a proper subset S of the units modulo m, must there
be arbitrarily long sequences of consecutive primes, each congruent to a unit in S?

009:10 (Gerry Myerson) Capital letters stand for finite sets of natural numbers, lower case
letters for individual natural numbers. B generates a means there are subsets C and D of B
such that a =

∑
(C) −

∑
(D), where

∑
(X) is the sum of the elements of X. B generates

A means B generates a for all a in A. Trivially, for all A, A generates A. We say A is
independent if no set with fewer elements than A generates A.

1. Find an defined recursively as the smallest number such that { a1, a2, . . . , an } is
independent.

2. With an as above, find bn defined recursively as the smallest r such that, for all m ≥ r,
{ a1, . . . , an−1,m } is independent.

3. Find cn defined as the smallest N such that { 1, 2, . . . , N } has an independent subset
with n elements.

Remarks: 1. To illustrate, { 8, 9, 15 } generates { 1, 2, 6, 32 } since 1 = 9−8, 2 = 9+8−15,
6 = 15− 9, and 32 = 15 + 9 + 8. Thus, { 1, 2, 6, 32 } is not independent.

2. The an sequence begins 1, 2, 6, 30. It was suggested that a5 might be 210, but this
is not the case, as { 35, 36, 37, 102 } generates { 1, 2, 6, 30, 210 }. It might be the case that
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a5 = 270 and, generally, an =
∏n−2

j=0 (2j + 1), but this is a hunch, not a conjecture.

3. The bn sequence begins 1, 2, 6, 33. We have b5 ≥ 289, since { 38, 68, 75, 107 } generates
{ 1, 2, 6, 30, 288 }.

4. The cn sequence begins 1, 2, 5. Perhaps { 6, 15, 17, 18 } is independent, and perhaps
c4 = 18.

009:11 (M. Tip Phaovibul) Let φ be the Euler phi-function, let Sn =
∑n

i=1 φ(n), let p be an
odd prime, and let Aa = {n : Sn ≡ a (mod p) }.

1. Does Aa have positive density in N?

2. Is Sn uniformly distributed (modulo p)? That is, do we have

lim
N→∞

1

N
#{n ≤ N : Sn ≡ a (mod p) } =

1

p

for all a?

009:12 (Roger Baker) Let S be a sequence a1, a2, . . . of positive integers, let I be a subin-
terval of [0, 1], and let ES(I) = {x in R : {anx} is not in I, n = 1, 2, . . . }, where {y} is the
fractional part of y.

1. Show that if an = O(np) for any p > 1 then the Hausdorf dimension of ES(I) is zero.

2. Construct a sequence with an = O(np) for some p > 1 such that ES(I) is uncountable
for some I.

009:13 (Youssef Fares) Let p be a prime and let Fm and Fn be Fibonacci numbers. Write
νp(r) for the number s such that ps divides r but ps+1 doesn’t. What is νp(Fn − Fm)?

009:14 (Bart Goddard) For k in N, what are the series

∞∑
n=1

(−1)n+1

(
2n+ 1

2k

)
y2n−1

(2n+ 1)!
and

∞∑
n=1

(−1)n+1

(
2n+ 1

2k + 1

)
y2n−2

(2n+ 1)!

Remarks: 1. For k = 1, the first series is sin y, and for k = 0, the second series is cos y.

2. It was suggested that it might be possible to express the sums as hypergeometric
functions.

009:15 (Christina Holdiness) Let pi be the ith prime. Is p1p2 . . . pn − pn+1 prime?

Solution: Jianqiang Zhao found the first counterexample: 2×3×5×7×11×13×17−19 =
41× 12451. Perhaps one could ask whether infnitely many of these numbers are prime.

009:16 (Nathan Rowe) Is it true that for every natural number n and for every m in Z/nZ
there is a polynomial f with coefficients in Z/nZ such that f(m) = 1 and f(x) = 0 for
x 6= m?

Solution: If n is composite then there exists m in Z/nZ for which there is no such
polynomial. For let n = rs with r > 1 and s > 1. Then f(r) ≡ f(0) (mod r).
If f(r) ≡ 1 (mod n), then f(r) ≡ 1 (mod r), so f(0) ≡ 1 (mod r), so f(0) 6≡ 0 (mod n).

On the other hand if n is prime then
∏

a 6=m
x−a
m−a is such a polynomial.
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009:17 (Jianqiang Zhao) Let Bn be the nth Bernoulli number. Is it true that for all prime
p ≥ 11, ∑

1≤i<j<k<`≤p−1

1

i3jk3`
≡ − p

72
Bp−9 (mod p2)

009:18 (Jean-Marie De Koninck and Nicolas Doyon) Let P (n) be the largest prime dividing n,
and let δ(n) be the distance from n to the nearest integer m with P (m) ≤ P (n).

1. Prove that for all k ≥ 1 the expected proportion of integers n such that δ(n) = k is
2/(4k2 − 1).

2. Given k, let n = nk be the smallest positive integer such that δ(m) = 1 for all m,
n ≤ m ≤ n+ k − 1. Is it true that nk ≤ n! for all k 6= 4?

3. Let ∆(n) =
∑

d|n δ(d). Given k, let n = nk be the smallest n such that

∆(n) = ∆(n+ 1) = . . . = ∆(n+ k − 1). Does nk exist for all k ≥ 2?

Remarks: 1. To illustrate, here is a table to show that δ(100) = 4.

n 96 97 98 99 100 101 102 103
P (n) 3 97 7 11 5 101 17 103

2. The first part of the question is implied by the following hypothesis: let k be at
least 2, and let a1, a2, . . . , ak be any permutation of the numbers 0, 1, . . . , k − 1. Then we
have Prob

(
P (n+ a1) < P (n+ a2) < . . . < P (n+ ak)

)
= 1/k!.

3. Here is a small table of values of nk for the second question.

k 1 2 3 4 5 6 7 8 9 10 11 12
nk 1 1 1 91 91 169 2737 26536 67311 535591 3021151 26817437

k 13 14 15
nk 74877777 657240658 785211337

4. For the third problem we have n2 = 14 (∆(14) = ∆(15) = 4), n3 = 33 (∆(33) =
∆(34) = ∆(35) = 4), n4 = 2189815 (∆(n4 + i) = 12 for i = 0, 1, 2, 3), n5 = 7201674
(∆(n5 + i) = 14 for i = 0, 1, 2, 3, 4), and n6, if it exists, exceeds 1,500,000,000.

009:19 (Dave Rusin) Hayes (anticipated, at least in part, by Bredihin) proved that if f(x)
is of degree n ≥ 1 in Z[x] then f = g + h for some irreducible polynomials g and h, each of
degree n. Saidak, attributing the result to Hayes, proved that if f(x) is monic with degree at
least 1 then f = g+h for some irreducible monic polynomials g and h (but if the degree of f
is 1 then this seems to require us to accept the constant polynomial 1 as irreducible). Under
what conditions on f can we insist that g and h have non-negative coefficients? For example,
is it true if f is monic with non-negative coefficients at least three of which, including the
constant term, exceed 1?

009:20 (Pante Stanica) For k and t natural numbers let St be the set of pairs (a, b),
0 ≤ a, b ≤ 2k − 2, such that a+ b ≡ t (mod 2k − 1) and s2(a) + s2(b) < k, where s2(n) is the
number of ones in the binary representation of n. Show that #(St) < 2k−1.

Remark: This has been verified for t ≤ 19 and also for all t of various special forms.
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