Western Number Theory Problems, 17 \& 19 Dec 2009

Edited by Gerry Myerson
for distribution prior to 2010 (Utah) meeting

Summary of earlier meetings \& problem sets with old (pre 1984) \& new numbering.

1967 Berkeley	1968 Berkeley	1969 Asilomar	
1970 Tucson	1971 Asilomar	1972 Claremont	72:01-72:05
1973 Los Angeles	73:01-73:16	1974 Los Angeles	74:01-74:08
1975 Asilomar	75:01-75:23		
1976 San Diego	1-65 i.e.,	-76:65	
1977 Los Angeles	101-148 i.e.,	-77:48	
1978 Santa Barbara	151-187 i.e.,	-78:37	
1979 Asilomar	201-231 i.e.,	-79:31	
1980 Tucson	251-268 i.e.,	-80:18	
1981 Santa Barbara	301-328 i.e.,	-81:28	
1982 San Diego	351-375 i.e.,	-82:25	
1983 Asilomar	401-418 i.e.,	-83:18	
1984 Asilomar	84:01-84:27	1985 Asilomar	85:01-85:23
1986 Tucson	86:01-86:31	1987 Asilomar	87:01-87:15
1988 Las Vegas	88:01-88:22	1989 Asilomar	89:01-89:32
1990 Asilomar	90:01-90:19	1991 Asilomar	91:01-91:25
1992 Corvallis	92:01-92:19	1993 Asilomar	93:01-93:32
1994 San Diego	94:01-94:27	1995 Asilomar	95:01-95:19
1996 Las Vegas	96:01-96:18	1997 Asilomar	97:01-97:22
1998 San Francisco	98:01-98:14	1999 Asilomar	99:01-99:12
2000 San Diego	000:01-000:15	2001 Asilomar	001:01-001:23
2002 San Francisco	002:01-002:24	2003 Asilomar	003:01-003:08
2004 Las Vegas	004:01-004:17	2005 Asilomar	005:01-005:12
2006 Ensenada	006:01-006:15	2007 Asilomar	007:01-007:15
2008 Fort Collins	008:01-008:15	2009 Asilomar	009:01-009:20

COMMENTS ON ANY PROBLEM WELCOME AT ANY TIME

Department of Mathematics, Macquarie University,
NSW 2109 Australia gerry@math.mq.edu.au Australia-2-9850-8952 fax 9850-8114

009:01 (Vic Dannon) Riemann, quoted on p. 838 of Hawking, ed., God Created the Integers, writes, "let us use (x) to indicate the excess of x over the next whole number, or, if x is midway between two values $\ldots(x)$ indicates the average of both values $1 / 2$ and $-1 / 2$, i.e., zero." Then he lets $f(x)=\sum_{n=1}^{\infty} n^{-2}(n x)$ and writes that if $x=p /(2 n)$ with p odd then
$f(x+0)=f(x)-\frac{1}{2 n^{2}}\left(1+\frac{1}{9}+\frac{1}{25}+\ldots\right)$ and $f(x-0)=f(x)+\frac{1}{2 n^{2}}\left(1+\frac{1}{9}+\frac{1}{25}+\ldots\right)$, "but otherwise everywhere $f(x+0)=f(x), f(x-0)=f(x)$."

How does Riemann do this?
Remark: We interpret the definition of (x) to be zero if $x=m+(1 / 2)$ for some integer m, otherwise $x-n(x)$, where $n(x)$ is the integer nearest x. We also interpret $f(x+0)$ (resp., $f(x-0)$) to mean $\lim _{y \rightarrow x^{+}} f(y)$ (resp., $\lim _{y \rightarrow x^{-}} f(y)$), which we will abbreviate to $f(x)^{+}$ (resp., $f(x)^{-}$).

Solution: We take it that what is asked for is a derivation of the displayed formulas. We'll do the first one, as the second follows the same lines. Interchanging limit and summation, we have

$$
f(x)^{+}=(x)^{+}+(1 / 4)(2 x)^{+}+(1 / 9)(3 x)^{+}+\ldots .
$$

Note that $(y)^{+}=(y)-(1 / 2)$ if y is half an odd integer, otherwise $(y)^{+}=(y)$. Now let $x=p /(2 n)$, so

$$
f\left(\frac{p}{2 n}\right)^{+}=\left(\frac{p}{2 n}\right)^{+}+(1 / 4)\left(\frac{2 p}{2 n}\right)^{+}+(1 / 9)\left(\frac{3 p}{2 n}\right)^{+}+\ldots
$$

and $\left(\frac{k p}{2 n}\right)^{+}=\left(\frac{k p}{2 n}\right)-\frac{1}{2}$ if $k=r n$ for some odd $r,\left(\frac{k p}{2 n}\right)$ otherwise. Thus,

$$
\begin{aligned}
f\left(\frac{p}{2 n}\right)^{+} & =\left(\frac{p}{2 n}\right)+(1 / 4)\left(\frac{2 p}{2 n}\right)+(1 / 9)\left(\frac{3 p}{2 n}\right)+\ldots-\frac{1}{2}\left(\frac{1}{n^{2}}+\frac{1}{(3 n)^{2}}+\frac{1}{(5 n)^{2}}+\ldots\right) \\
& =f\left(\frac{p}{2 n}\right)-\frac{1}{2 n^{2}}\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots\right)
\end{aligned}
$$

009:02 (Russell Hendel) Let $G_{n}=\sum_{a=1}^{m} a_{i} G_{n-i}$ for some integer $m \geq 1$, with a_{i} real. Assume $\sum^{\infty} G_{i}^{-1}<\infty$. Let H_{n} be the nearest integer to $\left(\sum_{i=n}^{\infty} G_{i}^{-1}\right)^{-1}$ (rounding half-integers up). Let $T_{n}=H_{n}-\sum_{a=1}^{m} a_{i} H_{n-i}$.

1. Find conditions under which T_{n} is periodic.
2. When is there a closed form for T_{n} ?
3. If T_{n} is bounded, must it be periodic?

Remark: If $G_{n}=c\left(a^{n}+\epsilon b^{n}\right)$ with a, b, c real, $c>0,-1<\epsilon<1$, and $a>\max \left(|b|, b^{2}, 1\right)$, then T_{n} is bounded. A reference for related matters is

Ohtsuka and Nakamura, On the sums of reciprocals of Fibonacci numbers, Fib. Q. 46/47 (2008/2009) 153-159.

009:03 (Neville Robbins) For $1 \leq k \leq n$, let $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ be the number of cyclic equivalence classes of compositions of n into k parts. E.g., $\left\langle{ }_{3}^{6}\right\rangle=4$, the four equivalence classes being those containing $411,321,312$, and 222.

1. Find a formula for $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$.
2. Prove that $\left\langle\begin{array}{c}n \\ n-k\end{array}\right\rangle=\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ for $1 \leq k \leq n-1$.
3. Prove $\left\langle\begin{array}{c}2 n \\ n\end{array}\right\rangle$ is even for all $n \geq 2$.

Remarks: It is known that if $\operatorname{gcd}(k, n)=1$ then $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=\frac{1}{n}\binom{n}{k}$, and that

$$
\sum_{k=1}^{n-1}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle=-2+\frac{1}{n} \sum_{d \mid n} \phi(d) 2^{n / d}
$$

Solution: $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ counts the number of bracelets with n equally spaced beads, of which k are white, the others, black, two bracelets being considered identical if one is a rotation of the other. This solves question 2. A table of the numbers can be found at A047996 in the On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/ ${ }^{\text {njas/sequences/index.html }}$ where they are referred to as "circular binomial coefficients." Many references are given, as well as the formula, $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=(1 / n) \sum_{d \mid \operatorname{gcd}(n, k)} \phi(d)\binom{n / d}{k / d}$

009:04 (Boris Kupershmidt, via Bart Goddard) Let p_{n} be the nth prime. It is known that $p_{n+1}\left(1-p_{n}^{-1}\right)>p_{n}$ for $p_{n}>2$. Find the largest α such that $p_{n+1}\left(1-\alpha p_{n}^{-1}\right)>p_{n}$ for $p_{n}>n_{0}(\alpha)$.

Solution: Carl Pomerance shows that if $\alpha>2$ then the inequality holds for all n sufficiently large, while if there are infinitely many twin primes then the inequality fails infinitely often for $\alpha=2$.

Proof. Given any $\epsilon>0$, we know $p_{n} / p_{n+1}>1-\epsilon$ for all n sufficiently large. Also, $p_{n+1}-p_{n} \geq 2$ provided $p_{n}>2$. So $\left(p_{n+1}-p_{n}\right) p_{n} / p_{n+1}>2(1-\epsilon)$ for n sufficiently large. This is equivalent to $p_{n+1}\left(1-2(1-\epsilon) p_{n}^{-1}\right)>p_{n}$ for n sufficiently large. On the other hand, if $p_{n+1}=p_{n}+2$ then $p_{n+1}\left(1-2 p_{n}^{-1}\right)=\left(p_{n}+2\right)\left(1-2 p_{n}^{-1}\right)=p_{n}-4 p_{n}^{-1}<p_{n}$.

009:05 (Youssef Fares) Let K be a number field. Let $E=\left\{n\right.$ in $\left.\mathbf{N}: n=2^{k} p_{1} p_{2} \ldots p_{r}\right\}$ where $k \geq 0$ and p_{1}, \ldots, p_{r} are distinct prime numbers inert in K. Are there infinitely many n such that n and $n+1$ are both in E ?

009:06 (Youssef Fares) If $f(x)$ in $\mathbf{Z}[x]$, considered as a map from \mathbf{Z} to $\mathbf{Z} / p^{r} \mathbf{Z}$, is surjective for all primes p and all r, then the degree of f is 1 . What can one conclude if f is in $\mathbf{Z}[x, y]$ and is surjective for all primes p and all r as a map from $\mathbf{Z} \times \mathbf{Z}$ to $\mathbf{Z} / p^{r} \mathbf{Z}$?

Remark: If $f(x, y)=x+y g(x, y)$, with g arbitrary, then $f(n, 0)=n$, so f is surjective from $\mathbf{Z} \times \mathbf{Z}$ to \mathbf{Z}, hence to $\mathbf{Z} / p^{r} \mathbf{Z}$. So perhaps one cannot conclude much.

009:07 (David Terr) For positive rational α, let $g(\alpha)$ be the number of terms in the expression $\alpha=a_{1}^{-1}+a_{2}^{-1}+\ldots+a_{r}^{-1}$ of α as a sum of unit fractions obtained by the greedy algorithm (that is, where each a_{i} is chosen maximal given $\left.a_{1}, \ldots, a_{i-1}\right)$, and let $h(\alpha)$ be the smallest number of unit fractions summing to α. E.g., the greedy algorithm yields $9 / 20=3^{-1}+9^{-1}+180^{-1}$ so $g(9 / 20)=3$, but $9 / 20=4^{-1}+5^{-1}$ so $h(9 / 20)=2$.

Let $d(N)=N^{-2} \#\{(m, n): 1 \leq m<n \leq N, \operatorname{gcd}(m, n)=1, g(m / n)=h(m / n)\}$ (note that $\left.\#\{(m, n): 1 \leq m<n \leq N, \operatorname{gcd}(m, n)=1\}=3 \pi^{-2} N^{2}(1+o(1))\right)$. Does $\lim _{N \rightarrow \infty} d(N)$ exist? If so, what is it? If not, what are $\lim \sup d(N)$ and $\liminf d(N)$?

009:08 (Carl Pomerance) Let $F^{\uparrow}(x)$ (resp., $F^{\downarrow}(x)$) be the size of the largest subset of the integers in $[1, x]$ on which the Euler phi-function is monotone non-decreasing (resp., nonincreasing).

1. Is it true that $F^{\uparrow}(x)=o(x)$?
2. Is it true that $F^{\uparrow}(x)-\pi(x) \rightarrow \infty$?
3. Is it true that $F^{\downarrow}(x)=o(x)$?

Remark: It is known that there is a constant $c>0$ such that $F^{\downarrow}(x) \geq x^{c}$. A conjecture of Erdős implies that this holds for every $c<1$.

009:09 (Mike Decaro) For a given n, is there an upper bound on k, the number of consecutive primes for which

$$
\left(\frac{n}{p_{i}}\right)=\left(\frac{n}{p_{i+1}}\right)=\ldots=\left(\frac{n}{p_{i+k-1}}\right)
$$

Here $\left(\frac{n}{p}\right)$ is the Legendre symbol.
Remarks: Kjell Wooding notes the following.

1. If n is a square then clearly $\left(\frac{n}{p_{i}}\right)=\left(\frac{n}{p_{i+1}}\right)=\ldots=1$ provided only that p_{i} exceeds the greatest prime divisor of n.
2. For any k and any p_{i}, we can use the Chinese Remainder Theorem to construct n such that $\left(\frac{n}{p_{i}}\right)=\left(\frac{n}{p_{i+1}}\right)=\ldots=\left(\frac{n}{p_{i+k-1}}\right)$.
3. Given n (not a square) and p_{i}, we'd expect $\left(\frac{n}{p_{i}}\right)=\left(\frac{n}{p_{i+1}}\right)$ about half the time, $\left(\frac{n}{p_{i}}\right)=\left(\frac{n}{p_{i+1}}\right)=\left(\frac{n}{p_{i+2}}\right)$ about a quarter of the time, and so on. This suggests that there is no upper bound on k.

Your editor notes that in the case $n=-1$ we are asking whether there are arbitrarily long runs of consecutive primes all belonging to the same congruence class modulo 4 . Perhaps then the question is really about primes in collections of arithmetic progressions, and we could ask it this way: given a modulus m, and a proper subset S of the units modulo m, must there be arbitrarily long sequences of consecutive primes, each congruent to a unit in S ?

009:10 (Gerry Myerson) Capital letters stand for finite sets of natural numbers, lower case letters for individual natural numbers. B generates a means there are subsets C and D of B such that $a=\sum(C)-\sum(D)$, where $\sum(X)$ is the sum of the elements of $X . B$ generates A means B generates a for all a in A. Trivially, for all A, A generates A. We say A is independent if no set with fewer elements than A generates A.

1. Find a_{n} defined recursively as the smallest number such that $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is independent.
2. With a_{n} as above, find b_{n} defined recursively as the smallest r such that, for all $m \geq r$, $\left\{a_{1}, \ldots, a_{n-1}, m\right\}$ is independent.
3. Find c_{n} defined as the smallest N such that $\{1,2, \ldots, N\}$ has an independent subset with n elements.

Remarks: 1. To illustrate, $\{8,9,15\}$ generates $\{1,2,6,32\}$ since $1=9-8,2=9+8-15$, $6=15-9$, and $32=15+9+8$. Thus, $\{1,2,6,32\}$ is not independent.
2. The a_{n} sequence begins $1,2,6,30$. It was suggested that a_{5} might be 210 , but this is not the case, as $\{35,36,37,102\}$ generates $\{1,2,6,30,210\}$. It might be the case that
$a_{5}=270$ and, generally, $a_{n}=\prod_{j=0}^{n-2}\left(2^{j}+1\right)$, but this is a hunch, not a conjecture.
3. The b_{n} sequence begins $1,2,6,33$. We have $b_{5} \geq 289$, since $\{38,68,75,107\}$ generates $\{1,2,6,30,288\}$.
4. The c_{n} sequence begins $1,2,5$. Perhaps $\{6,15,17,18\}$ is independent, and perhaps $c_{4}=18$.

009:11 (M. Tip Phaovibul) Let ϕ be the Euler phi-function, let $S_{n}=\sum_{i=1}^{n} \phi(n)$, let p be an odd prime, and let $A_{a}=\left\{n: S_{n} \equiv a(\bmod p)\right\}$.

1. Does A_{a} have positive density in \mathbf{N} ?
2. Is S_{n} uniformly distributed (modulo p)? That is, do we have

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n \leq N: S_{n} \equiv a \quad(\bmod p)\right\}=\frac{1}{p}
$$

for all a ?
009:12 (Roger Baker) Let \mathcal{S} be a sequence a_{1}, a_{2}, \ldots of positive integers, let I be a subinterval of $[0,1]$, and let $E_{\mathcal{S}}(I)=\left\{x\right.$ in $\mathbf{R}:\left\{a_{n} x\right\}$ is not in $\left.I, n=1,2, \ldots\right\}$, where $\{y\}$ is the fractional part of y.

1. Show that if $a_{n}=O\left(n^{p}\right)$ for any $p>1$ then the Hausdorf dimension of $E_{\mathcal{S}}(I)$ is zero.
2. Construct a sequence with $a_{n}=O\left(n^{p}\right)$ for some $p>1$ such that $E_{\mathcal{S}}(I)$ is uncountable for some I.

009:13 (Youssef Fares) Let p be a prime and let F_{m} and F_{n} be Fibonacci numbers. Write $\nu_{p}(r)$ for the number s such that p^{s} divides r but p^{s+1} doesn't. What is $\nu_{p}\left(F_{n}-F_{m}\right)$?

009:14 (Bart Goddard) For k in \mathbf{N}, what are the series

$$
\sum_{n=1}^{\infty}(-1)^{n+1}\binom{2 n+1}{2 k} \frac{y^{2 n-1}}{(2 n+1)!} \quad \text { and } \quad \sum_{n=1}^{\infty}(-1)^{n+1}\binom{2 n+1}{2 k+1} \frac{y^{2 n-2}}{(2 n+1)!}
$$

Remarks: 1. For $k=1$, the first series is $\sin y$, and for $k=0$, the second series is $\cos y$.
2. It was suggested that it might be possible to express the sums as hypergeometric functions.

009:15 (Christina Holdiness) Let p_{i} be the i th prime. Is $p_{1} p_{2} \ldots p_{n}-p_{n+1}$ prime?
Solution: Jianqiang Zhao found the first counterexample: $2 \times 3 \times 5 \times 7 \times 11 \times 13 \times 17-19=$ 41×12451. Perhaps one could ask whether infnitely many of these numbers are prime.

009:16 (Nathan Rowe) Is it true that for every natural number n and for every m in $\mathbf{Z} / n \mathbf{Z}$ there is a polynomial f with coefficients in $\mathbf{Z} / n \mathbf{Z}$ such that $f(m)=1$ and $f(x)=0$ for $x \neq m$?

Solution: If n is composite then there exists m in $\mathbf{Z} / n \mathbf{Z}$ for which there is no such polynomial. For let $n=r s$ with $r>1$ and $s>1$. Then $f(r) \equiv f(0)(\bmod r)$. If $f(r) \equiv 1(\bmod n)$, then $f(r) \equiv 1(\bmod r)$, so $f(0) \equiv 1(\bmod r)$, so $f(0) \not \equiv 0(\bmod n)$.

On the other hand if n is prime then $\prod_{a \neq m} \frac{x-a}{m-a}$ is such a polynomial.

009:17 (Jianqiang Zhao) Let B_{n} be the nth Bernoulli number. Is it true that for all prime $p \geq 11$,

$$
\sum_{1 \leq i<j<k<\ell \leq p-1} \frac{1}{i^{3} j k^{3} \ell} \equiv-\frac{p}{72} B_{p-9} \quad\left(\bmod p^{2}\right)
$$

009:18 (Jean-Marie De Koninck and Nicolas Doyon) Let $P(n)$ be the largest prime dividing n, and let $\delta(n)$ be the distance from n to the nearest integer m with $P(m) \leq P(n)$.

1. Prove that for all $k \geq 1$ the expected proportion of integers n such that $\delta(n)=k$ is $2 /\left(4 k^{2}-1\right)$.
2. Given k, let $n=n_{k}$ be the smallest positive integer such that $\delta(m)=1$ for all m, $n \leq m \leq n+k-1$. Is it true that $n_{k} \leq n$! for all $k \neq 4$?
3. Let $\Delta(n)=\sum_{d \mid n} \delta(d)$. Given k, let $n=n_{k}$ be the smallest n such that $\Delta(n)=\Delta(n+1)=\ldots=\Delta(n+k-1)$. Does n_{k} exist for all $k \geq 2$?

Remarks: 1. To illustrate, here is a table to show that $\delta(100)=4$.

$$
\begin{array}{ccccccccc}
n & 96 & 97 & 98 & 99 & 100 & 101 & 102 & 103 \\
P(n) & 3 & 97 & 7 & 11 & 5 & 101 & 17 & 103
\end{array}
$$

2. The first part of the question is implied by the following hypothesis: let k be at least 2 , and let $a_{1}, a_{2}, \ldots, a_{k}$ be any permutation of the numbers $0,1, \ldots, k-1$. Then we have $\operatorname{Prob}\left(P\left(n+a_{1}\right)<P\left(n+a_{2}\right)<\ldots<P\left(n+a_{k}\right)\right)=1 / k!$.
3. Here is a small table of values of n_{k} for the second question.

k	1	2	3	4	5	6	7	8	9	10	11	12
n_{k}	1	1	1	91	91	169	2737	26536	67311	535591	3021151	26817437
k		13		14		15						
n_{k}	74877777	657240658	785211337									

4. For the third problem we have $n_{2}=14(\Delta(14)=\Delta(15)=4), n_{3}=33(\Delta(33)=$ $\Delta(34)=\Delta(35)=4), n_{4}=2189815\left(\Delta\left(n_{4}+i\right)=12\right.$ for $\left.i=0,1,2,3\right), n_{5}=7201674$ $\left(\Delta\left(n_{5}+i\right)=14\right.$ for $\left.i=0,1,2,3,4\right)$, and n_{6}, if it exists, exceeds $1,500,000,000$.

009:19 (Dave Rusin) Hayes (anticipated, at least in part, by Bredihin) proved that if $f(x)$ is of degree $n \geq 1$ in $\mathbf{Z}[x]$ then $f=g+h$ for some irreducible polynomials g and h, each of degree n. Saidak, attributing the result to Hayes, proved that if $f(x)$ is monic with degree at least 1 then $f=g+h$ for some irreducible monic polynomials g and h (but if the degree of f is 1 then this seems to require us to accept the constant polynomial 1 as irreducible). Under what conditions on f can we insist that g and h have non-negative coefficients? For example, is it true if f is monic with non-negative coefficients at least three of which, including the constant term, exceed 1 ?

009:20 (Pante Stanica) For k and t natural numbers let S_{t} be the set of pairs (a, b), $0 \leq a, b \leq 2^{k}-2$, such that $a+b \equiv t\left(\bmod 2^{k}-1\right)$ and $s_{2}(a)+s_{2}(b)<k$, where $s_{2}(n)$ is the number of ones in the binary representation of n. Show that $\#\left(S_{t}\right)<2^{k-1}$.

Remark: This has been verified for $t \leq 19$ and also for all t of various special forms.

