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Abstract

The Cahn-Hilliard equation is a fourth-order parabolic partial differ-
ential equation that is one of the leading models for the study of phase
separation in isothermal, isotropic, binary mixtures, such as molten
alloys. When a spatially homogeneous alloy is rapidly quenched in
a physical experiment, a fine-grained decomposition into two distinct
phases is frequently observed; this phenomenon is known as spinodal
decomposition. A simple linear analysis about an unstable homogeneous
equilibrium of the one-dimensional Cahn-Hilliard equation gives heuris-
tic evidence that most solutions that start with initial data near such
an equilibrium exhibit a behavior corresponding to spinodal decomposi-
tion. In this paper we formulate this conjecture in a mathematically pre-
cise way, using geometric and measure-theoretic techniques, and prove
its validity. We believe that this is the first rigorous treatment of this
phenomenon.

1 Introduction

When a molten binary alloy is rapidly quenched to a lower temperature, the

sample may become inhomogeneous very quickly, decomposing into a fine-
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FIG. 1: Bulk free energy density.

grained mixture of particles in different phases. For example, micrographs in

[3] and [4] clearly show a fine-grained structure, with a characteristic length

scale, appearing in a variety of materials under such circumstances. This

phenomenon is known as spinodal decomposition.

One of the leading models devised for the study of spinodal decomposition

is the Cahn-Hilliard equation

∂u

∂t
= −∆

(
ε2∆u−W ′(u)

)
x ∈ Ω (1)

∂u

∂ν
=

∂∆u

∂ν
= 0 x ∈ ∂Ω,

where Ω is a bounded open subset of Rn with sufficiently smooth boundary,

ν is the unit outward normal, ε is a small positive parameter, and W is a C5

function qualitatively similar to the one depicted in Figure 1. The interval

where W ′′ < 0 is known as the spinodal region. The variable u represents the

concentration of one of the two components of the alloy, so
∫
Ω udx represents

the total mass of that component. Note that the boundary conditions imply

that mass is conserved, since

d

dt

∫
Ω

udx =
∫
Ω

∂u

∂t
dx =

∫
Ω
[−∆(ε2∆u−W ′(u))]dx

= −
∫

∂Ω

[
∂

∂ν
(ε2∆u−W ′(u))

]
ds = 0.

In 1893 van der Waals [24] first suggested that the functional
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∫
Ω

[
W (u) +

ε2

2
|∇u|2

]
dx (2)

was a good model for the free energy of binary mixtures. Over 60 years

later Cahn and Hilliard [5] [2] rediscovered this functional and derived (1) as

the evolution equation induced by (2) through Fick’s law of diffusion. They

performed a linear analysis of (1) and argued that the results of this analysis

suggested what we shall call the Principle of Spinodal Decomposition:

Most solutions to the Cahn-Hilliard equation that start with initial data near a

fixed constant in the spinodal region exhibit fine-grained decomposition. Since

this conjecture agrees with the outcome of physical experiments, the Cahn-

Hilliard equation has been accepted as a meaningful model of the dynamics of

phase transitions.

In the last 30 years the Cahn-Hilliard equation has been the subject of

much study. For example, existence and uniqueness theorems for solutions

of (1) in various function spaces have been proven by, among others, Elliott

and Zheng [7], Nicolaenko and Scheurer [17], Rankin [20], and Temam [23].

Carr, Gurtin, and Slemrod [6], Modica [15], Novick-Cohen and Segel [18], and

Zheng [25], have results about steady-state solutions of (1); these results are

important in understanding the asymptotic behavior of arbitrary solutions to

(1) because the Cahn-Hilliard equation is a dissipative system (see, e.g., [23]),

so each of its solutions approaches a time-independent solution (or possibly a

collection of such solutions) as t becomes large.

In spite of this work, several aspects of the Cahn-Hilliard equation have

not received a rigorous mathematical treatment. In particular, the Principle

of Spinodal Decomposition stated above has neither been formulated with

mathematical precision nor been proven to be valid. In this paper, we make

some progress towards filling in this gap by stating and proving a number

of formulations of the Principle of Spinodal Decomposition when Ω is one-

dimensional.

We will proceed as follows. In Section 2 a linear analysis of the Cahn-

Hilliard equation will be performed and it will be explained why this analysis

suggests that spinodal decomposition occurs. Much of the work necessary

to justify this conjecture does not make use of the special structure of the

Cahn-Hilliard equation, so this part, which can be found in Section 3, will be

performed in the framework of an ordinary differential equation in an abstract

Hilbert space, using the theory of analytic semigroups. This theory can be

used to show the existence of a pseudo-unstable manifold, an invariant man-

ifold consisting of the fastest-growing solutions in a neighborhood of a fixed

equilibrium. Here we obtain this manifold as a fairly easy consequence of some
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results on invariant manifolds for maps by Hirsch, Pugh, and Shub [12]. This

manifold could also be found as a submanifold of the unstable manifold if the

latter is finite-dimensional.

What is of more interest than the pseudo-unstable manifold itself is the

flow nearby. We will construct an open positively-invariant neighborhood of

the manifold that contains positive semiorbits that have similar long-time be-

haviors and estimate the location of the boundaries of this set near the equi-

librium. This is reminiscent of some work found in Chapter 5 of Henry [11],

where he defines sets that have certain invariance properties in a neighborhood

of an equilibrium, but our approaches are quite different, and there does not

seem to be an easy way to use his particular methods to obtain the results we

need for spinodal decomposition. Additionally, our methods avoid the need

to renorm the space, so we preserve the original Hilbert space structure. This

fact allows us to translate the geometric estimates on the boundaries of the

invariant set into statements about the measure of the set, with respect to any

(non-degenerate) Gaussian measure. (A Gaussian measure is a generalization

of the one-dimensional normal distribution.)

In Section 4, the special properties of the one-dimensional Cahn-Hilliard

equation will be taken into account; in particular, the periodicity and ampli-

tude of ω-limit points of orbits making up a one-dimensional pseudo-unstable

manifold will be described in some detail. This information is sufficient, in

combination with the abstract results of Section 3, to show that the Principle

of Spinodal Decomposition holds in one dimension. Our main results can be

roughly summarized as follows:

1. Sufficiently small perturbations of a generic unstable homogeneous equi-

librium that are not orthogonal to a particular direction generate solu-

tions to the Cahn-Hilliard equation which exhibit spinodal decomposi-

tion.

2. Near a generic unstable homogeneous equilibrium, there is a set of initial

data whose boundary satisfies a simple power law such that solutions

originating in this set exhibit spinodal decomposition. The particular

power governing the boundary is dependent upon the size of a particular

spectral gap of the linearized Cahn-Hilliard equation.

3. Given a generic unstable homogeneous equilibrium and a nondegener-

ate Gaussian measure centered at this equilibrium, as the covariance of

the measure shrinks to 0 through rescaling, the measure of the set of

initial data that produces solutions exhibiting spinodal decomposition
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approaches 1 at an asymptotic rate dependent on the spectral gap men-

tioned above.

These results constitute Theorems 6, 7, and 8, respectively. Because of their

technical nature, the precise statement of these theorems will be postponed to

Section 4.

2 Linear Analysis

2.1 The Dispersion Relation

At this point, let us be more precise about the requirements for the nonlin-

earity W . Although Cahn and Hilliard originally used a function W which

approached infinity at finite values of u, we will follow the convention of most

of the recent literature and assume that W is defined for all real numbers. We

will also assume that there exist real numbers α1 < α2 < α3 < α4 < α5 such

that W is strictly decreasing on (−∞, α1] and on [α3, α5], strictly increasing

on [α1, α3] and on [α5,∞), concave up on (−∞, α2) ∪ (α4,∞), and concave

down on (α2, α4). (See Figure 1.)

Now consider the Cahn-Hilliard equation when Ω = [0, 1]:

ut = −(ε2uxx −W ′(u))xx x ∈ (0, 1) (3)

ux = uxxx = 0 x ∈ {0, 1}.

If the mass M is in the spinodal region then β2 def
= −W ′′(M) > 0. Linearizing

(3) about u ≡M gives

ut = −ε2uxxxx − β2uxx x ∈ (0, 1) (4)

ux = uxxx = 0 x ∈ {0, 1}.

The eigenfunctions of the linear operator on the right-hand side of the first

line of (4), subject to the boundary conditions in the second line, are

{cos nπx : n = 0, 1, 2, . . .}.

Substituting u = an cos nπx into (4), where an is a function of t, gives

an(t) = an(0) exp(λnt),

where

λn = (nπ)2[β2 − ε2(nπ)2]. (5)
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For 0 < n < β/(επ), λn > 0, so the corresponding Fourier modes grow as

time progresses in the linearized equation (4), while the other modes remain

steady or shrink. Thus, for ε < β/π spatially homogeneous equilibria in the

spinodal region are linearly unstable. Elementary calculus implies that the

maximum of λn over all n ∈ R occurs when n = β/
(
επ
√

2
)
, so the one or two

integer values of n whose squares are nearest to β2/(2ε2π2) correspond to the

modes that grow the most rapidly under (4). It is not hard to see that the

largest eigenvalue of the linearized operator is simple except when λn = λn+1

for some n ∈ N. An easy calculation shows that this holds when

ε =
β

π
√

2n2 + 2n + 1
.

In particular, there is generically a unique fastest-growing mode. Also, the

wavelength of this mode is O(ε), so if ε is small then the wavelength of the

fastest-growing mode is small, also.

To understand the implications of the linearized analysis done in the pre-

ceding section, consider the behavior of the linear system of ordinary differen-

tial equations
d

dt

(
u1

u2

)
=

(
λ+ 0

0 λ−

) (
u1

u2

)
, (6)

where λ+ > λ− > 0. The fastest-growing solutions of this linear system lie

completely on the u1-axis. Each of the other orbits is tangent to the u2-axis

and lies on a curve of the form

u1 = Cu
λ+/λ−
2 ,

for some constant C. Consider a small circular neighborhood of the origin

and the forward semiorbits of (6) that begin there. Most of these semiorbits

eventually run nearly parallel to the fastest-growing solution and stay relatively

close to it. Thus, in some sense, the fastest-growing solution dominates most

orbits starting near the origin.

Now if the solutions to the Cahn-Hilliard equation behave in an analo-

gous fashion then the fastest-growing mode should dominate the behavior of

most solutions with initial values that are small perturbations from a con-

stant. Thus, the evolution of a typical small perturbation from the homoge-

neous steady-state might be as depicted in the three cross-sections in Figure 2.

Somewhat independently of the initial data, the characteristic periodic struc-

ture of the fastest-growing mode would emerge. In the next two sections, we

show that these heuristics are correct.
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FIG. 2: Typical evolution sequence for the Cahn-Hilliard equation.

3 Evolution in a Hilbert Space

3.1 The Abstract Setting

Consider an evolution equation that can be represented in the form

d

dt
u(t) = Au(t) + f(u(t)) t > 0 (7)

u(0) = u0,

where u(t) is an element of a Hilbert space X. Suppose the following hold.

1. The operator −A is a sectorial operator on X, and S(t) is the analytic

semigroup generated by A.

2. For some α ∈ [0, 1), f maps Xα into X, where Xα ≡ D((−A1)
α) is a

Hilbert space with an inner product equivalent to the graph norm, and

A1 = A−a1 for some a1 such that Reσ(A1) < 0. Both the inner product

and the induced norm will be identified with a subscript α.

3. The map f : Xα → X is C1 and satisfies f(0) = 0 and Df(0) = 0.

4. The operator A induces a decomposition of X, X = X−⊕X+, such that

(a) X− and X+ are invariant under A;

(b) X− and X+ are orthogonal with respect to the inner product on

Xα;
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(c) X+ is finite-dimensional and X+ ⊂ D(A);

(d) and Re(σ(A−)) < a < b < Re(σ(A+)), where A− : X− ∩ D(A) →
X− and A+ : X+ → X+ are the restrictions of A to X− and

X+, respectively, and σ(L) represents the spectrum of the linear

operator L.

Intuition suggests that there is an invariant manifold for (7) that is tan-

gent to X+ at 0 and that, in some sense, controls the forward-time flow of

nearby solutions. More precisely, the speed at which nearby solutions move in

a direction parallel to the manifold should be much greater than the speed at

which they are repelled by the manifold. In the special case when a < 0 < b,

this invariant manifold is the unstable manifold whose existence is proved by

Henry [11]. In the special case when α = 0 (but for more general A) Bates and

Jones [1] have an elegant proof for the existence of this pseudo-unstable mani-

fold for arbitrary a and b. This special case is also the subject of some powerful

results recently obtained by Kening Lu [14]. Here we obtain the existence of

pseudo-unstable manifolds for more general nonlinearities as a consequence of

the theory of Hirsch, Pugh, and Shub [12] for invariant manifolds for maps. In

order to determine the nature of the flow near such a manifold, we construct

estimates on the growth or decay of solutions in the X+ and X− directions

similar to those used by Bates and Jones in [1]. In their paper, these estimates

imply the existence of invariant cones; since our estimates are not as good

for the α 6= 0 case, we can only construct pairs of cones that have a weaker

invariance property. Nevertheless, these are sufficient for our purposes.

At this point it should be mentioned that the pseudo-unstable manifold is

not an inertial manifold if σ(A−) intersects the right halfplane, since it will

not attract nearby semiorbits, let alone attract them exponentially. Thus,

the large body of literature concerning the existence and stability of inertial

manifolds (see Temam [23] for a survey of this literature) does not apply here.

3.2 Growth Estimates Near an Equilibrium

It will be useful to consider the problem obtained when the nonlinearity f in

(7) is modified so that it is very well-behaved outside of a small neighborhood

of 0. We make use of the following technical lemma.

Lemma 1 For any ε > 0, there exists f̂ : Xα → X such that f̂ is C1, is

globally Lipschitz continuous with a Lipschitz constant no greater than ε, and

agrees with f in some neighborhood of 0. If, in addition, ‖Df(u)‖L(Xα,X) =

O(‖u‖α) then f̂ can be made to agree with f on a ball of radius ρ centered at

0, where ρ−1 = O(ε−1) as ε→ 0.
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Proof. Let ψ : R → [0, 1] be a C∞ function that is 1 on [−1, 1], that is 0

on (−∞,−4]∪ [4,∞), and that satisfies |ψ′| ≤ 1 on R. Choose ρ > 0 so small

that ‖Df(u)‖L(Xα,X) ≤ ε/9 if ‖u‖α ≤ ρ. The mean value theorem then says

that f has a Lipschitz constant less than or equal to ε/9 on the ball of radius

ρ centered at 0. If f̂ is defined by

f̂(u) = ψ

(
4‖u‖2α

ρ2

)
f(u),

then f̂(u) = f(u) for ‖u‖α ≤ ρ/2 and f̂(u) = 0 for ‖u‖α > ρ. For h ∈ Xα,

Df̂(u)h =
8

ρ2
ψ′

(
4‖u‖2α

ρ2

)
〈u, h〉αf(u) + ψ

(
4‖u‖2α

ρ2

)
Df(u)h,

so

‖Df̂(u)‖L(Xα,X) ≤
8

ρ2

∣∣∣∣∣ψ′
(

4‖u‖2α
ρ2

)∣∣∣∣∣ ‖u‖α‖f(u)‖

+

∣∣∣∣∣ψ
(

4‖u‖2α
ρ2

)∣∣∣∣∣ ‖Df(u)‖L(Xα,X) ≤ ε

if ‖u‖α ≤ ρ. By the mean value theorem, this proves that f̂ has a global

Lipschitz constant no greater than ε.

It is easy to see that if ‖Df(u)‖L(Xα,X) = O(‖u‖α), then ρ can be chosen

so that ρ−1 = O(ε−1) as ε→ 0. This completes the proof of the lemma.

The equation that results from modifying the nonlinearity is

d

dt
u(t) = Au(t) + f̂(u(t)) t > 0 (8)

u(0) = u0.

Unless it is explicitly stated otherwise, when solutions, semiorbits, etc. are

mentioned, reference is being made to (8). The letters v and w will represent

elements of X− and X+, respectively. Also, where the particular topology

used is not specified, implicit reference is being made to the Xα topology.

Let S−(t) and S+(t) be the analytic semigroups generated by A− and A+,

respectively. Henry [11] gives the following estimates on these semigroups:

‖S+(t)w‖α ≤ C1e
bt‖w‖α, w ∈ X+, t ≤ 0, (9)

‖S+(t)w‖α ≤ C2e
bt‖w‖, w ∈ X+, t ≤ 0, (10)

‖S−(t)v‖α ≤ C3e
at‖v‖α, v ∈ X− ∩Xα, t ≥ 0, (11)

‖S−(t)v‖α ≤ C4e
att−α‖v‖, v ∈ X−, t ≥ 0. (12)
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Solutions of (8) satisfy the variation-of-constants formula (see, e.g., [9])

u(t) = S(t)u0 +
∫ t

0
S(t− s)f̂(u(s))ds (13)

for t ≥ 0. Write u = v + w with v ∈ X− and w ∈ X+, and then project (13)

onto these two subspaces to get the pair of integral equations

v(t) = S−(t)v(0) +
∫ t

0
S−(t− s)f̂−(v(s), w(s))ds (14)

w(t) = S+(t)w(0) +
∫ t

0
S+(t− s)f̂+(v(s), w(s))ds (15)

for t ≥ 0, where f̂− and f̂+ are the projections of f̂ onto X− and X+, re-

spectively. Note that S+(τ) makes sense for negative τ since X+ is finite-

dimensional, so a change of variable in (15) can be made to get

w(t + τ) = S+(τ)w(t) +
∫ τ

0
S+(τ − s)f̂+(v(t + s), w(t + s))ds (16)

for τ ≥ −t. Taking norms in (14) and (16) and using the estimates in (9)

through (12) yields

‖v(t)‖α ≤ ‖v(0)‖αC3e
at

+ C4ε
∫ t

0
(‖v(s)‖α + ‖w(s)‖α)(t− s)−αea(t−s)ds (17)

for t ≥ 0, and

‖w(t + τ)‖α ≤ C1‖w(t)‖αebτ

+ C2ε
∫ 0

τ
(‖v(t + s)‖α + ‖w(t + s)‖α)eb(τ−s)ds (18)

for 0 ≥ τ ≥ −t.

Lemma 2 Let U : [−t, 0] → [0,∞) be continuous. Suppose that for some

positive M and N ,

U(τ) ≤MU(0) + N
∫ 0

τ
U(s)ds

for −t ≤ τ ≤ 0. Then U(0) ≥ U(−t)e−Nt/M .

Proof. Apply the standard version of Gronwall’s inequality to Û : [0, t] →
[0,∞) defined by Û(τ) = U(−τ).

The following is a generalization of Gronwall’s inequality. Results of this

type are essential when dealing with analytic semigroups and fractional spaces,
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and related estimates can be found in Henry [11] and Pazy [19], for example.

The proof presented here is different in that it is not of an iterative nature.

Lemma 3 Let U : [0, t] → [0,∞) be continuous, and let 0 ≤ α < 1. Suppose

that for some positive M and N ,

U(τ) ≤MU(0) + N
∫ τ

0
(τ − s)−αU(s)ds (19)

for 0 ≤ τ ≤ t. Then

U(t) ≤ 2MU(0) exp
[
(2NΓ(1− α))1/(1−α)t

]
.

Proof. Let θ = (2NΓ(1− α))1/(1−α), and let V (t) = 2(MU(0) + ε) exp(θt),

for some small ε > 0. If τ > 0 then∫ τ

0
(τ − s)−αV (s)ds = V (τ)

∫ τ

0
(τ − s)−αe−θ(τ−s)ds

=
V (τ)

θ1−α

∫ θτ

0
r−αe−rdr

<
V (τ)

θ1−α
Γ(1− α)

=
V (τ)

2N
.

Thus,

MU(0) + ε + N
∫ τ

0
(τ − s)−αV (s)ds

< MU(0) + ε +
V (τ)

2
≤ V (τ), (20)

for all τ > 0.

Now set

τ ∗ = sup {τ ∈ [0, t] : ∀s ∈ [0, τ ], U(s) < V (s)} .

Substituting τ = 0 into (19) gives U(0) ≤ MU(0), so U(0) < V (0), which

means that this set is not empty. Applying (19) and (20) with τ = τ ∗ gives

U(τ ∗) < MU(0) + ε + N
∫ τ∗

0
(τ ∗ − s)−αV (s)ds

≤ V (τ ∗).

Since U and V are continuous, the strict inequality U(τ ∗) < V (τ ∗) must mean

that τ ∗ = t, so
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U(t) < V (t) = 2(MU(0) + ε) exp
[
(2NΓ(1− α))1/(1−α)t

]
.

Letting ε→ 0 gives the stated conclusion.

Now suppose ‖w(s)‖α ≥ µ‖v(s)‖α for 0 ≤ s ≤ t. Then v can be eliminated

from the right-hand side of (18), and an application of Lemma 2 with U(τ) =

‖w(t + τ)‖αe−bτ yields

‖w(t)‖α ≥ C−1
1 ‖w(0)‖α exp

[
(b− C2ε(1 + µ−1))t

]
. (21)

Suppose, on the other hand, that ‖w(s)‖α ≤ µ‖v(s)‖α for 0 ≤ s ≤ t. Then

w can be eliminated from the right-hand side of (17), and an application of

Lemma 3 with U(t) = ‖v(t)‖αe−at yields

‖v(t)‖α ≤ 2C3‖v(0)‖α exp
[
(a + (2C4ε(1 + µ)Γ(1− α))1/(1−α))t

]
. (22)

These two estimates hold for the evolution with the modified nonlinearity f̂ ,

but note that they also hold in a neighborhood of 0 for the original nonlinearity.

Note also that no Cj is in any way dependent on ε or µ.

3.3 Invariant Manifolds

According to Theorem 3.4.4 in [11] the time-t map T (t) induced by (8) is

continuously differentiable from Xα to Xα and the derivative of this map

at 0 is S(t). Let a < γ < b. Then the estimates (9) and (11) imply that

for t sufficiently large S(t) is eγt-pseudo hyperbolic, using the terminology of

Hirsch, Pugh, and Shub [12]. Also, the canonical spectral decomposition of

Xα corresponding to this pseudo hyperbolic endomorphism is compatible with

the decomposition X− ⊕X+ of X.

Lemma 4 For fixed t, the global Lipschitz constant of T (t)−S(t) can be made

arbitrarily small by making the Lipschitz constant of f̂ sufficiently small.

Proof. Because of (11) and (12), and since X+ is finite-dimensional, there

must exist valid estimates of the form

‖S(t)u‖α ≤ C5e
ktt−α‖u‖ (23)

‖S(t)u‖α ≤ C6e
kt‖u‖α. (24)

Let u1(t) and u2(t) be two solutions of (8). Then by (13) and (23),

‖(T (t)− S(t))u1(0)− (T (t)− S(t))u2(0)‖α
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=

∥∥∥∥∫ t

0
S(t− s)(f̂(u1(s))− f̂(u2(s)))ds

∥∥∥∥
α

≤ C5ε
∫ t

0

ek(t−s)

(t− s)α
‖u1(s)− u2(s)‖αds. (25)

Also by (13), (23), and (24),

‖u1(t)− u2(t)‖α ≤ C6e
kt‖u1(0)− u2(0)‖α

+ C5ε
∫ t

0

ek(t−s)

(t− s)α
‖u1(s)− u2(s)‖αds. (26)

If Lemma 3 is applied to (26) with U(t) = ‖u1(t)−u2(t)‖αe−kt, then for ε < 1,

‖u1(t)− u2(t)‖α ≤ 2C6 exp(C7t)‖u1(0)− u2(0)‖α, (27)

with C7 independent of ε. By substituting (27) into (25) it can be seen that

there is C8 depending on t but not on ε, u1(0), or u2(0), such that

‖(T (t)− S(t))u1(0)− (T (t)− S(t))u2(0)‖α ≤ C8ε‖u1(0)− u2(0)‖α.

This completes the proof of the lemma.

Lemma 4 completes the verification of all the hypotheses of Theorem 5.1

and Corollary 5.3 in [12]. Those results imply that if t is sufficiently large and

if ε is sufficiently small then the set

W+ def
= {u ∈ Xα : ∀n, T (t)−nu exists and ‖T (t)−nu‖αeγnt → 0 as n→∞}

is the graph of a C1 map from X+ to X− ∩Xα that is tangent to X+ at 0. In

the definition of W+, it is only required that some backward semiorbit of the

map T (t) exists, and that the given estimate holds along it.

This is the pseudo-unstable manifold of the time-t map of (8) (correspond-

ing to the particular decomposition of the space under consideration). A sim-

ilar set can be defined for the semiflow of (8):

W+ def
= {u ∈ Xα : T (t)−1u exists for t > 0, ‖T (t)−1u‖αeγt → 0 as t→∞},

where, as with W+, the estimate in the definition of W+ holds along some

backward semiorbit. Clearly W+ ⊆ W+. By the proof of Lemma 4, there is

a maximum factor by which the norm of a solution ‖u(t)‖α can grow within

a fixed length of time. This implies that, in fact, W+ = W+, so a pseudo-

unstable manifold exists for the semiflow of (8). The intersection of this with

a small neighborhood of 0 gives a local version of this invariant manifold for
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(7), but it might be dependent on the behavior of orbits far from the origin,

in which case it will not have a simple characterization in terms of the growth

rates of solutions of (7). However, if we restrict the location of the spectral

gap (a, b) by assuming that b > 0 (and γ > 0) then the version of W+ for (7)

does not have this pathology, so it will have a characterization in terms of (7)

analogous to the characterization of W+ in terms of (8). As Hirsch, Pugh, and

Shub point out in [12], this characterization implies uniqueness.

3.4 Flow near the Pseudo-unstable Manifold

3.4.1 Evolution in Cones

If µ > 0 let

Kµ = {v + w ∈ Xα : µ‖v‖α ≤ ‖w‖α},

γ+
µ (ε) = b− C2ε(1 + µ−1),

and

γ−µ (ε) = a + (2C4ε(1 + µ)Γ(1 + α))1/(1−α),

and note that γ+
µ (ε) and γ−µ (ε) are each monotone increasing in µ. Also, let

C9 = 2C1C3.

Lemma 5 Let µ > 0 be given. If the Lipschitz constant ε of f̂ is so small

that γ+
µ/C9

(ε) > γ−µ (ε) then any semiorbit starting in Kµ remains in Kµ/C9 for

all positive time.

Proof. Let ε > 0 be so small that γ+
µ/C9

(ε) > γ−µ (ε). Let v(t) + w(t)

be a semiorbit starting at v(0) + w(0) ∈ Kµ. If v(0) + w(0) = 0 then the

conclusion of the lemma is obvious, so assume that v(0) + w(0) 6= 0. Suppose

that v(t) + w(t) eventually reaches ∂Kµ/C9
. Then without loss of generality it

may be assumed that v(0) + w(0) ∈ ∂Kµ, v(t) + w(t) ∈ ∂Kµ/C9 \ {0}, and for

0 < τ < t, v(τ) + w(τ) ∈ Kµ/C9
\Kµ. Using (21) and (22),

‖v(t)‖α
‖w(t)‖α

≤
2C1C3‖v(0)‖α exp(γ−µ (ε)t)

‖w(0)‖α exp(γ+
µ/C9

(ε)t)
=

C9

µ
exp((γ−µ (ε)− γ+

µ/C9
(ε))t) <

C9

µ
.

This means v(t) + w(t) 6∈ ∂Kµ/C9 , contrary to assumption. This contradiction

shows that v(t) + w(t) never reaches ∂Kµ/C9
, so the positive semiorbit must

remain in Kµ/C9 for all time.

Let Kc
µ represent the closure of the complement of Kµ. Restating the

preceding lemma in terms of backward semiorbits, yields the following.
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Lemma 6 Let µ > 0 be given. If the Lipschitz constant ε of f̂ is so small

that γ+
µ/C9

(ε) > γ−µ (ε) then any backward semiorbit starting in Kc
µ/C9

remains

in Kc
µ as long as it exists.

The same method that gave the estimates (21) and (22) on the growth and

decay of a solution can be used to give similar estimates on the growth and

decay of the difference of two solutions. Thus, the cones described above can

be centered at points other than the origin, and if the centers are allowed to

evolve with the flow, then the corresponding generalizations of Lemmas 5 and

6 hold.

Define the truncated cones

Kµ(r) = {v + w ∈ Kµ : ‖w‖α ≤ r}

and

Kc
µ(r) = {v + w ∈ Kc

µ : ‖v‖α ≤ r}.

The following theorem says roughly that a semiorbit starting at a random

point near 0 will blow up as t→∞, and as it does so it will stay close to W+.

Theorem 1 Let µ > 0 be given. Suppose the Lipschitz constant ε of f̂ is so

small that W+ exists and is tangent to X+ at 0, γ+
µ/C9

(ε) > 0, and

γ+
µ/(2C9)(ε)− γ−C9µ(ε) >

b− a

λ
,

for some λ > 1. Then for any δ > 0 and R > 0 there exists r > 0 such that

any semiorbit v(t) + w(t) starting at v(0)+ w(0) ∈ Kµ(r) \ {0} will eventually

exit the cylinder

{v + w ∈ Xα : ‖w‖α ≤ R},

and the distance in the X− direction from the exit point to W+ is less than δ.

In particular, r will satisfy these conditions if

0 < r < min

 δµ

8C3

(
δµ

C9(1 + C9)R

)λγ−
µ/2

(ε)/(b−a)

, R

 . (28)

Proof. Recall that every point on W+ lies on a backward semiorbit that

approaches 0 as t → −∞. Since W+ is tangent to X+ at 0, each of these

backward semiorbits intersects KC9µ. By the choice of ε,

γ+
µ (ε) > γ+

µ/(2C9)(ε) > γ−C9µ(ε),
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so by Lemma 5 it must be true that W+ ⊂ Kµ.

Let u2(0) = v2(0) + w2(0) be a point on the base of Kµ/C9
(R), and let

u1(0) = v1(0) + w1(0) be the point lying on W+ such that w1(0) = w2(0).

Suppose

‖v1(0)− v2(0)‖α ≥ δ,

and suppose t > 0 is such that the (finite) backward semiorbit

{u2(−τ) : −t ≤ −τ ≤ 0}

exists and is contained in Kµ/C9
. By the choice of ε,

γ+
µ/(2C9)(ε) > γ−C9µ(ε) > γ−µ/2(ε),

so the analogue of Lemma 6 for cones centered at u1(−t) says that u2(−t) ∈
u1(−t) + Kc

µ/2. Also, an estimate similar to (22) follows easily:

δ ≤ ‖v2(0)− v1(0)‖α ≤ 2C3‖v2(−t)− v1(−t)‖α exp(γ−µ/2(ε)t). (29)

On the other hand,

µ

C9
‖v2(−t)‖α ≤ ‖w2(−t)‖α ≤ C1R exp(−γ+

µ/C9
(ε)t). (30)

By combining (29) and (30) and making use of the triangle inequality and the

fact that u1(−t) ∈ Kµ, we get

C1R exp(−γ+
µ/C9

(ε)t) ≥ δµ

2C3C9

exp(−γ−µ/2(ε)t)−
C1R

C9

exp(−γ+
µ (ε)t).

Thus, (
C1R

C9
+ C1R

)
exp(−γ+

µ/C9
(ε)t) ≥ δµ

2C3C9
exp(−γ−µ/2(ε)t),

⇒ 2C3C9

δµ

(
C1R

C9

+ C1R
)
≥ exp(γ+

µ/C9
(ε)t− γ−µ/2(ε)t),

⇒ C9(1 + C9)R

δµ
≥ exp

(
b− a

λ
t

)
,

⇒ t ≤ t∗
def
=

λ

b− a
ln

(
C9(1 + C9)R

δµ

)
.

Now suppose, in addition, that u2(−t) ∈ Kµ(r). Then since u2(−t) ∈
u1(−t) + Kc

µ/2 and u1(−t) ∈ Kµ, it follows from elementary analytic geometry

that u1(−t) ∈ Kµ(3r). Hence,
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‖v1(−t)− v2(−t)‖α ≤ ‖v1(−t)‖α + ‖v2(−t)‖α ≤
4r

µ
. (31)

But

‖v1(−t)− v2(−t)‖α ≥ δ

2C3
exp(−γ−µ/2(ε)t)

≥ δ

2C3
exp(−γ−µ/2(ε)t

∗)

=
δ

2C3

(
δµ

C9(1 + C9)R

)λγ−
µ/2

(ε)/(b−a)

. (32)

Combining (31) and (32) gives a contradiction if r satisfies (28). For such r,

u2(−t) cannot enter Kµ(r) without first exiting Kµ/C9 .

Now if a (forward) semiorbit starts in Kµ(r) it must exit Kµ/C9
(R) through

its base, because of the choice of ε. But by the preceding argument, if r satisfies

(28) the distance between its exit point and W+ in the X− direction must be

less than δ.

Corollary 1 Suppose every nonzero point on the local pseudo-unstable mani-

fold corresponding to (7) has a nontrivial ω-limit set (under (7)) and let Ω be

a neighborhood of the union of these ω-limit sets. Let

Ω′
def
= {u(0) ∈ Xα : ∃t ≥ 0 such that u(t) ∈ Ω},

where u(t) represents the positive semiorbit for (7) beginning at u(0). Then

for any µ > 0 there exists r > 0 such that Kµ(r) \ {0} ⊂ Ω′.

Proof. Let ε satisfy the hypotheses of Theorem 1, for some λ > 1. Choose

R small enough that f and f̂ agree on Kµ/C9
(R). Let SR consist of those

points v + w ∈ X+ ⊕ X− that lie on the local pseudo-unstable manifold and

satisfy ‖w‖α = R. Note that any semiorbit beginning on SR enters Ω. Because

(7) has continuous dependence on initial data [23], some open subset V of

{v + w ∈ Xα : ‖w‖α = R}

containing SR has this same property. Since X+ is finite-dimensional, SR is

compact, so there exists δ > 0 such that

⋃
v+w∈SR

{v̂ + w ∈ Xα : ‖v̂ − v‖α < δ}

is contained in V . (See, e.g., [16].) The corollary now follows from an appli-

cation of Theorem 1.
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Corollary 2 Let Ω and Ω′ be as in Corollary 1, and let u0 ∈ Xα have a

nontrivial X+ component. If |k| is sufficiently small, then ku0 ∈ Ω′.

Proof. This is an immediate consequence of Corollary 1.

3.4.2 Regions Tangent to the Pseudo-Stable Subspace

Theorem 2 Let Ω and Ω′ be as in Corollary 1. Then there exists r > 0 and

F : R → R satisfying F (0) = F ′(0) = 0 such that if F (‖v0‖α) < ‖w0‖α < r

then v0 + w0 ∈ Ω′.

Proof. Apply Corollary 1 with µ = 1. Define F as follows: F is even

and for x ≥ 0, F (x) is the supremum of all y ≤ r such that there exists

v +w ∈ X−⊕X+ satisfying ‖v‖α = x, ‖w‖α = y, and such that the semiorbit

under (7) beginning at v + w never enters Ω. Then from its definition, F has

all the desired properties except possibly F ′(0) = 0. This property is verified

below.

Now the graph of F lies below the graph of x 7→ |x| on (−r, r). Let

µ ∈ (0, 1). Applying Corollary 1 again produces a secondary truncated cone

Kµ(r̂). The base of Kµ(r̂) hits the lateral surface of K1(r) at some positive

distance d(µ) away from the X+ axis. Then it is clear that on (−d(µ), d(µ))

the graph of F lies below the graph of x 7→ µ|x|. Since this holds for all

µ ∈ (0, 1), it must be true that F ′(0) = 0.

3.4.3 Regions with Boundaries Satisfying a Power Law

Theorem 2 would be more powerful if it provided more information about the

function F . A stronger result is possible if a further assumption is made.

Lemma 7 If ‖Df(u)‖L(Xα,X) = O(‖u‖α) as u → 0 then the tangency of the

pseudo-unstable manifold W+ at 0 is quadratic. That is, ‖v‖α = O(‖w‖2α) for

u = v + w ∈W+ as u→ 0.

Proof. As was mentioned in the proof of Theorem 1, Lemma 5 implies that

the pseudo-unstable manifold for (8) is contained in Kµ provided that

γ+
µ (ε) > γ−C9µ(ε).

Written out explicitly, this condition is

b− C2ε(1 + µ−1) > a + (2C4ε(1 + C9µ)Γ(1 + α))1/(1−α). (33)

As µ→∞, there exists a constant k1 > 0 such that ε and µ will satisfy (33) if
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ε ≤ k1

µ
. (34)

Also, Lemma 1 says that there exists a constant k2 > 0 such that f and f̂ can

be made to agree on Kµ(R) provided that

R
√

1 + µ−2 ≤ k2ε. (35)

Thus, for such R, the local version of W+ for (7) (independent of ε) exits

Kµ(R) through its base, not through its lateral surface. Combining (34) and

(35), there is a constant k3 > 0 such that if R ≤ k3/µ, then the pseudo-

unstable manifold exits Kµ(R) through its base. This means that if v + w

is on this manifold and ‖w‖α ≤ k3/µ then µ‖v‖α ≤ ‖w‖α. In particular, if

‖w‖α = k3/µ then

‖v‖α ≤
1

µ
‖w‖α =

1

k3
‖w‖2α.

Hence, ‖v‖α = O(‖w‖2α).

Lemma 8 Let Ω and Ω′ be as in Corollary 1. Suppose that in the proof of

Theorem 2, δ can be chosen so that

δ ≥ k̂Rq (36)

as R→ 0 for some q < 2, and let

E(q)
def
= 2− (2− q)λb

(2− q)λb + q(b− a)
.

Then if ‖Df(u)‖L(Xα,X) = O(‖u‖α) as u→ 0 there exist r > 0 and k > 0 such

that if k‖v‖E(q)
α < ‖w‖α < r then v + w ∈ Ω′.

Proof. Note that in producing the secondary cones in the proof of Theorem

2, it was sufficient for ε and R to satisfy

ε ≤ k2µ, (37)

and

R
√

1 + C2
9µ
−2 ≤ k3ε, (38)

for some constants k2 > 0 and k3 > 0 and for every µ sufficiently small.

Combining (37) and (38) shows that (38) can be replaced by

R ≤ k4µ
2. (39)
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Substituting (36), (37), and (39) into (28) and simplifying gives the estimate

r̂ ≤ k5µ
2+((2−q)λb)/(q(b−a)) , (40)

for some constant k5 > 0, as the only requirement on the heights of the sec-

ondary cones in the proof of Theorem 2. If x is the radius of one of these

secondary cones (in the X− direction), then µ = r̂/x. Making this substitu-

tion in (40) gives the estimate

r̂ ≥ kxE(q), (41)

where E(q) is as defined in the statement of the lemma and k is some positive

constant depending on q. Applying (41) to the proof of Theorem 2 gives the

desired result.

The following theorem strengthens the result of Theorem 2.

Theorem 3 Let Ω and Ω′ be as in Corollary 1. If ‖Df(u)‖L(Xα,X) = O(‖u‖α)

as u → 0 then for any power p < min{b/a, 2} there exists r > 0 and k > 0

such that if k‖v‖pα < ‖w‖α < r then v + w ∈ Ω′.

Proof. The theorem is proved by bootstrapping a finite number of times

with Lemma 8. To start off, apply Corollary 1 with µ = 1, to get a finite

cone contained in Ω′. Using this cone and Lemma 7 it can be seen that for

R sufficiently small the δ in Theorem 2 can be taken of the same order as R.

That is, there is a constant k1 > 0 such that, for R small, if

δ ≤ k1R,

then every point on the cylinder

{v + w ∈ Xα : ‖w‖α = R}

whose distance from W+ in the X− direction is no bigger than δ lies in Ω′.

Thus, Lemma 8 can be applied with q = 1. Just as the existence of the cone

in Ω′ allowed the application of this lemma with q = 1, the conclusion of this

lemma with q = 1 allows us to apply the lemma again with q = E(1). This

procedure can be iterated as many times as desired, to get better and better

power laws for a subset of Ω′. A straightforward calculation shows that E is

a strictly increasing function of q if

q < min

{
λb

(λ− 1)b + a
, 2

}
.
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Hence, either

En(1)→ min

{
λb

(λ− 1)b + a
, 2

}
as n→∞ or

En(1) ≥ min

{
λb

(λ− 1)b + a
, 2

}
for some n ∈ N. By taking λ sufficiently close to 1, we obtain the desired

result.

3.4.4 Measure-theoretic Results

Theorems 2 and 3 each identify a region of initial data near the origin whose

positive semiorbits are, in some sense, controlled by the pseudo-unstable man-

ifold. It is natural to try to find some way of determining the significance of

this region, and a natural way of doing this is finding its size with respect to

some measure. A very general measure-theoretic restatement of the results of

the previous sections is presented in a theorem below. The following definition

will be helpful: A subset S of a topological vector space is balanced if, for any

scalar α satisfying |α| ≤ 1, αS ⊂ S.

Lemma 9 If S is balanced then λS is balanced for any scalar λ. Also, the

union of balanced sets is balanced.

Proof. Verification of the lemma is straightforward.

Theorem 4 Let Ω and Ω′ be as in Corollary 1, and let ϕ be a probability

measure on the Borel sets of Xα. Given ε > 0 let ϕε be the scaled probability

measure defined by ϕε(V ) = ϕ(ε−1V ). Suppose ϕ(X− ∩ Xα) = 0. Then

ϕε(Ω
′)→ 1 as ε→ 0.

Proof. Define S to be the union of the (closed) finite cones constructed in

the proof of Theorem 2. Since each cone is balanced, by the second part of

Lemma 9, S is also balanced. Applying the first part of Lemma 9, ε−1S is

balanced for any ε > 0. Hence, ε−1
i S ⊂ ε−1

j S if εi > εj.

Now, let (εk) be a sequence of positive real numbers converging to 0. By

Corollary 2,

Xα \X− ⊂
∞⋃

k=1

1

εk
(S \ {0}),

so

1 = ϕ(Xα)

= ϕ(Xα \X−) + ϕ(Xα ∩X−)
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= ϕ(Xα \X−)

≤ ϕ

( ∞⋃
k=1

1

εk

(S \ {0})
)

= ϕ

( ∞⋃
k=1

1

εk
S

)

= lim
k→∞

ϕ
(

1

εk

S
)

= lim
k→∞

ϕ
(

1

εk

(S \ {0})
)

≤ lim
k→∞

ϕ
(

1

εk
Ω′

)
= lim

k→∞
ϕεk

(Ω′)

≤ 1.

This proves the theorem.

Let us now turn our attention to a particular class of probability measures

for which the preceding theorem can be strengthened. Probably the most

important measure on R that is concentrated near one particular point is

one-dimensional Gaussian measure ϕ defined by

ϕ(E) =
1√

2πσ2

∫
E

exp

(
−(x−m)2

2σ2

)
dx.

This measure corresponds to the normal distribution with mean m and vari-

ance σ2. A point mass measure may be considered to be a degenerate Gaussian

measure with variance 0. A Borel measure ϕ on a Hilbert space H is said to be

a Gaussian measure if each of its projections onto one-dimensional subspaces

gives a one-dimensional Gaussian measure; i.e., 〈·, h〉 is normally-distributed

for each h ∈ H . More precisely, if S{h} is the span of h ∈ H , the measure ϕh

on R given by

ϕh(E) = ϕ
(
Eh× (S{h})⊥

)
must be a one-dimensional Gaussian measure. Such measures are easiest to

deal with when H is separable, so assume that this is true for the remainder

of this section. Also, for simplicity only Gaussian measures with mean 0 (i.e.,

each projection has mean 0) will be considered. Nontrivial Gaussian measures

are easy to construct on separable Hilbert spaces by specifying the projections

onto an orthonormal system of vectors. These projections cannot, however,

be arbitrarily chosen; the variance of the nth projection must approach 0 at a

certain rate as n→∞. See Skorohod [22] for details.
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The following lemma shows how a Gaussian measure behaves with respect

to subspaces.

Lemma 10 Let H be a separable Hilbert space and ϕ a Gaussian measure on

H with mean 0. Let A ⊂ H be a Hilbert space, and define ϕA to be the measure

on A satisfying

ϕA(U) = ϕ(U × A⊥)

for every U ⊂ A. Then ϕA is a Gaussian measure with mean 0.

Proof. Let a ∈ A, and let E ⊂ R. Let A′ be the orthogonal complement

of S{a} in A. Then

ϕA
a (E) = ϕA(Ea× A′)

= ϕ((Ea× A′)×A⊥)

= ϕ(Ea× (A′ ×A⊥))

= ϕ(Ea× (S{a})⊥), (42)

where (S{a})⊥ is the orthogonal complement of S{a} in H . Since ϕ is a

Gaussian measure with mean 0, (42) implies that ϕA
a is a one-dimensional

Gaussian measure. Since this holds for any a ∈ A, ϕA must be a Gaussian

measure with mean 0.

The covariance operator Sϕ of a measure ϕ on a Hilbert space H is the

bounded linear operator on H defined by

〈Sϕx, y〉 =
∫

H
〈x, z〉〈y, z〉dϕ(z).

For an arbitrary measure the covariance operator may not exist; however,

it is clear that if Sϕ exists it must be positive semidefinite and self-adjoint.

Furthermore, a result due to Prohorov found in Kuo [13] shows that if ϕ is

a Gaussian measure on a separable Hilbert space then Sϕ exists and its trace

is finite. This fact allows one to estimate certain integrals with respect to ϕ.

The following result, which estimates how fast Gaussian measures must die

out at infinity, makes use of some work by Kuo [13].

Lemma 11 Let ϕ be a Gaussian measure with mean 0 on the separable Hilbert

space H. Then there exist positive constants M and k such that for any R ≥ 0

ϕ ({h ∈ H : ‖h‖ ≥ R}) ≤ Me−kR2

.
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Proof. Since Sϕ is bounded, positive semidefinite, and self-adjoint, H has

an orthonormal basis given by the eigenvectors {en} of Sϕ, with corresponding

(nonnegative) eigenvalues {αn}. Note that∫
H
〈x, en〉2dϕ(x) = 〈Sϕen, en〉 = 〈αnen, en〉 = αn,

so 〈·, en〉 is normally distributed with mean 0 and variance αn. Choose

k ∈
(
0, inf

{
1

2αn
: n ∈ N, αn 6= 0

})
.

This choice is possible since the boundedness of Sϕ implies that the αn are

bounded above. Now∫
H

ek‖x‖2dϕ(x) =
∫

H
ek

∑
n
〈x,en〉2dϕ(x)

=
∫

H

∏
n

ek〈x,en〉2dϕ(x)

=
∏
n

∫
H

ek〈x,en〉2dϕ(x). (43)

A routine computation gives∫
H

ek〈x,en〉2dϕ(x) =
∫ ∞
0

ϕ
({

x ∈ H : ek〈x,en〉2 ≥ y
})

dy = (1− 2kαn)
−1/2 ,

so (43) becomes ∫
H

ek‖x‖2dϕ(x) =
∏
n

(1− 2kαn)−1/2

=

(∏
n

(1− 2kαn)

)−1/2

. (44)

Since ∑
n

2kαn = 2k
∑
n

αn = 2k · tr(Sϕ) <∞,

the infinite product in (44) converges to a positive number. (See, e.g., Rudin

[21].)

Define

M =
∫

H
ek‖x‖2dϕ(x),

and

HR = {h ∈ H : ‖h‖ ≥ R}.

Then from (44),
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ϕ(HR) =
∫

HR

1dϕ(x)

≤
∫

HR

ek‖x‖2−kR2

dϕ(x)

= e−kR2
∫

HR

ek‖x‖2dϕ(x)

≤ e−kR2
∫

H
ek‖x‖2dϕ(x)

= Me−kR2

.

This completes the proof.

These results permit an estimate on the rate of convergence in Theorem 4

when ϕ is Gaussian.

Theorem 5 Let Ω and Ω′ be as in Corollary 1, and assume that

‖Df(u)‖L(Xα,X) = O(‖u‖α)

and Xα is separable. Let ϕ be a Gaussian measure on Xα with mean 0 such

that for all x ∈ X+ the induced variance of 〈·, x〉 is greater than 0. If ϕε is

defined as in Theorem 4, then

ϕε(Ω
′) = 1−O

(
εn(p−1)

)
for any p < min{b/a, 2}, where n = dim(X+).

Proof. Choose r > 0, k > 0, and

p′ ∈
(
p, min

{
b

a
, 2

})

such that

S
def
=

{
v + w ∈ Xα : k‖v‖p

′

α < ‖w‖α < r
}

is contained in Ω′. This is possible because of Theorem 3. Note that for ε > 0

sufficiently small, S contains the set

S
def
=

{
v + w ∈ Xα : εp < ‖w‖α < r, ‖v‖α <

(
εp

k

)1/p′
}

.

Thus,

ϕε(Ω
′) ≥ ϕε(S)

≥ ϕε(S)
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= ϕ
(

1

ε
S

)
≥ 1− ϕ

({
v + w ∈ Xα : ‖w‖α ≤ εp−1

})
− ϕ

({
v + w ∈ Xα : ‖w‖α ≥

r

ε

})
− ϕ

({
v + w ∈ Xα : ‖v‖α ≥

1

ε

(
εp

k

)1/p′
})

= 1− ϕX+
({

w ∈ X+ : ‖w‖α ≤ εp−1
})

− ϕX+
({

w ∈ X+ : ‖w‖α ≥
r

ε

})
− ϕX−∩Xα

({
v ∈ X− ∩Xα : ‖v‖α ≥

1

ε

(
εp

k

)1/p′
})

. (45)

Now for some constant C1 > 0

ϕX+
({

w ∈ X+ : ‖w‖α ≤ εp−1
})
≤ C1

(
εp−1

)n
, (46)

where n = dim(X+). This estimate comes from the simple observation that

an n-dimensional Gaussian measure for which no projection is a point mass

is absolutely continuous with respect to n-dimensional Lebesgue measure. By

Lemmas 10 and 11, the following estimates obtain:

ϕX+
({

w ∈ X+ : ‖w‖α ≥
r

ε

})
≤ C2 exp

[
−k2

(
r

ε

)2
]
, (47)

ϕX−∩Xα

({
v ∈ X− ∩Xα : ‖v‖α ≥

1

ε

(
εp

k

)1/p′
})

≤ C3 exp

−k3

(
1

ε

(
εp

k

)1/p′
)2


≤ C3 exp

[
−k4ε

2(p/p′−1)
]
. (48)

Estimates (47) and (48) say that the corresponding quantities in (45) are

transcendentally small as ε→ 0. Therefore, substituting (46) into (45) gives

ϕε(Ω
′) ≥ 1− O

(
εn(p−1)

)
.

Since ϕε(Ω
′) ≤ 1, the desired result follows immediately.
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4 Spinodal Decomposition

4.1 The Equation in an Abstract Setting

We now return to the Cahn-Hilliard equation. Let M lie in the spinodal region

of W so that W ′′(M) < 0. Recall that the constant u ≡ M is an equilibrium

for the Cahn-Hilliard equation. The goal in this section is to show that the

results of Section 3 regarding the nature of a semiflow in a neighborhood of an

equilibrium can be be applied to the Cahn-Hilliard equation, by showing that

the Cahn-Hilliard equation fits into the abstract setting described in Section

3.1.

The first thing to do is to make the change of variable û = u−M so that

the particular equilibrium of interest ends up at the origin. Simultaneously,

let β2 = −W ′′(M) > 0 (as in Section 2) and define the function ψ by

ψ(û) = W ′(û + M) + β2û. (49)

(Since W is C5, ψ is C4.) Making these substitutions into (1) and dropping

the caret from û gives

∂u

∂t
= −∆

(
ε2∆u + β2u− ψ(u)

)
x ∈ Ω (50)

∂u

∂ν
=

∂∆u

∂ν
= 0 x ∈ ∂Ω.

Define

Au = −∆(ε2∆u + β2u),

and let

f(u) = ∆(ψ(u)),

so (50) is of the form

ut = Au + f(u)

with f(0) = 0 as required. Let

X =
{
u ∈ L2(Ω) :

∫
Ω

udx = 0
}

and

D(A) =

{
u ∈ X ∩H4(Ω) :

∂u

∂ν

∣∣∣∣∣
∂Ω

=
∂∆u

∂ν

∣∣∣∣∣
∂Ω

= 0

}
.

Because the Cahn-Hilliard equation conserves mass, spaces with integral con-

straints are the most appropriate spaces with which to work. By Rankin [20],
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the linear operator −A with the given domain is a sectorial operator, so A

generates an analytic semigroup S(t). Also,

X1/2 =

{
u ∈ X ∩H2(Ω) :

∂u

∂ν

∣∣∣∣∣
∂Ω

= 0

}
.

Note that when Ω = [0, 1], an explicit spectral representation for S(t) was

derived in the process of performing the linear analysis.

In order to be able to use the results of Section 3 with α = 1/2, it is

necessary to show that f is continuously differentiable from X1/2 to X with

Df(0) = 0; if such results as Theorems 3 and 5 are to be used then it must

also be verified that

‖Df(u)‖L(X1/2,X) = O(‖u‖X1/2).

These verifications will be performed here under the assumption that dim(Ω) ≤
3. Expanding f(u) gives

f(u) = ∆(ψ(u)) = ψ′(u)∆u + ψ′′(u)|∇u|2.

The Sobolev imbedding theorems (see, e.g., Gilbarg and Trudinger [8]) imply

that H2(Ω) ↪→ L∞(Ω) ∩W 1,4(Ω); therefore, if u ∈ H2(Ω) then f(u) ∈ L2(Ω).

Also, if u ∈ X1/2 then ∂u
∂ν

= 0 on ∂Ω, so by the divergence theorem

∫
Ω

f(u)dx =
∫
Ω

∆(ψ(u))dx =
∫

∂Ω

∂ψ(u)

∂ν
dx = 0.

Since f(u) ∈ L2(Ω) and has mean value 0, f(u) ∈ X. Hence, f : X1/2 → X,

as was needed.

Next consider the linear mapping h 7→ ∆(ψ′(u)h) as a candidate for Df(u).

By expanding and repeatedly applying the triangle inequality, we get the es-

timate

‖∆(ψ(u + h))−∆(ψ(u))−∆(ψ′(u)h)‖L2

≤ ‖(ψ′(u + h)− ψ′(u))∆h‖L2

+ 2‖(ψ′′(u + h)− ψ′′(u))∇u · ∇h‖L2

+ ‖(ψ′(u + h)− ψ′(u))∆u− ψ′′(u)h∆u‖L2

+ ‖(ψ′′(u + h)− ψ′′(u))|∇u|2 − ψ′′′(u)|∇u|2h‖L2

+ ‖ψ′′(u + h)|∇h|2‖L2

def
= N1 + 2N2 + N3 + N4 + N5. (51)
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Applying the mean value theorem to N1 and N2 and to N3 and N4 twice

gives

N1 ≤ ‖ψ′′(θ1)h∆h‖L2

N2 ≤ ‖ψ′′′(θ2)h∇u · ∇h‖L2

N3 ≤ ‖ψ′′′(θ3)h
2∆u‖L2

N4 ≤ ‖ψ′′′′(θ4)h
2|∇u|2‖L2

where the θj are functions that are pointwise between u and u + h. Applying

Hölder’s inequality yields

N1 ≤ ‖ψ′′(θ1)‖L∞‖h‖L∞‖∆h‖L2

N2 ≤ ‖ψ′′′(θ2)‖L∞‖h‖L∞‖∇u‖L4‖∇h‖L4

N3 ≤ ‖ψ′′′(θ3)‖L∞‖h‖
2
L∞‖∆u‖L2

N4 ≤ ‖ψ′′′′(θ4)‖L∞‖h‖
2
L∞‖∇u‖2L4

N5 ≤ ‖ψ′′(u + h)‖L∞‖∇h‖2L4 ,

so by the Sobolev imbedding theorems, (51) gives

‖∆(ψ(u + h))−∆(ψ(u))−∆(ψ′(u)h)‖L2 = O
(
‖h‖2H2

)
(52)

as ‖h‖H2 → 0. Also,

‖∆(ψ′(u)h)‖L2 ≤ ‖ψ′′′(u)|∇u|2h‖L2

+ ‖ψ′′(u)h∆u‖L2

+ 2‖ψ′′(u)∇u · ∇h‖L2

+ ‖ψ′(u)∆h‖L2

≤ ‖ψ′′′(u)‖L∞‖∇u‖2L4‖h‖L∞
+ ‖ψ′′(u)‖L∞‖∆u‖L2‖h‖L∞
+ 2‖ψ′′(u)‖L∞‖∇u‖L4‖∇h‖L4

+ ‖ψ′(u)‖L∞‖∆h‖L2 .

By (49), ψ′(0) = 0, so

‖ψ′(u)‖L∞ = O (‖u‖L∞) ;

hence,

‖∆(ψ′(u)h)‖L2 = O (‖u‖H2‖h‖H2) . (53)

The combination of (52) and (53) implies that f : H2 → L2 is differentiable,

Df(u)h = ∆(ψ′(u)h), and
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‖Df(u)‖L(H2,L2) = O(‖u‖H2).

In particular, this means that Df(0) = 0. The verification of the fact that the

map u 7→ Df(u) is continuous from H2 to L(H2, L2) is essentially the same

as the derivation of (53), so the details will be omitted.

Now recall that all of the preceding estimates held for Ω ⊂ Rn, n ≤ 3, so

the results of Section 3 can be applied to the Cahn-Hilliard equation on any

such Ω, provided that an appropriate decomposition X−⊕X+ of X is chosen.

However, for these results to be very illuminating, something must be known

about the ω-limit set of an arbitrary point on the pseudo-unstable manifold

of interest. Such information is difficult to obtain in spaces of high dimension,

so for the rest of this section consider Ω = [0, 1] ⊂ R. As was mentioned in

Section 2, generically there is a single fastest-growing mode, say cos n0πx, for

the linearization of the Cahn-Hilliard equation about u ≡ 0. Suppose ε > 0

is such that this generic phenomenon is realized, and let X+ be the span of

cos n0πx and X− be the orthogonal subspace consisting of all other modes.

This decomposition satisfies all of the conditions in Section 3.

4.2 Properties of the ω-limit Points

Now return to the original coordinate system where the equilibrium of in-

terest lies at u ≡ M . Because the Cahn-Hilliard equation has a Lyapunov

functional, namely van der Waal’s free energy functional, and because this

functional is strictly decreasing along nonequilibrium trajectories, the ω-limit

set of any point consists entirely of equilibria. (The dissipativity of the Cahn-

Hilliard equation implies that each ω-limit set is nonempty.) By integrating

(3) and using the corresponding boundary conditions, it can be seen that an

equilibrium u(x) of the one-dimensional Cahn-Hilliard equation must satisfy

−ε2u′′(x) + W ′(u(x)) = c

for some constant c and boundary conditions

u′(0) = u′(1) = 0.

Since the only equilibria of interest are those with the same mass as the initial

data, c is not arbitrary but must be such that
∫ 1
0 u(x)dx = M . By defining

v(x) = u′(x) and observing the symmetry of the phase plane of the (u, v)

system about the u-axis, it is easy to see that u must either be strictly mono-

tone (in which case it can be thought of as being periodic with period 2) or
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2/k-periodic for some positive integer k. Also, each period is made up of two

reflection-symmetric monotone transition layers of width 1/k.

Now consider the pseudo-unstable manifold tangent to the X+ axis, where

X+ is as defined above. Consider the closed subspace Y ⊂ X consisting

of elements whose Fourier expansions contain only cosn0πx and its higher

harmonics, i.e, cos 2n0πx, cos 3n0πx, etc. This space is clearly invariant under

(3), so the methods of Section 3 could be applied to Y instead of X to obtain

a pseudo-unstable manifold tangent to X+ and contained within Y . Because

of the characterization of pseudo-unstable manifolds in terms of asymptotic

growth rates, they are unique, so these two manifolds must be the same;

consequently, the original pseudo-unstable manifold is contained in Y . Since

Y is closed, it also contains the ω-limit sets of every nonzero point on the

pseudo-unstable manifold. Hence, any equilibrium found in such an ω-limit set

must have minimal period equal to 2/(kn0) (and, therefore, transition layers

of width 1/(kn0)) for some positive integer k. In particular, this transition

length is O(ε) as ε→ 0.

It is not too hard to relate the periodicity of a steady-state solution for

the Cahn-Hilliard equation to its amplitude. The following proposition, which

is a special case of the Sturm comparison theorem [10], will be useful in this

regard.

Proposition 1 Let v1 and v2 satisfy

−ε2v′′1(x) + a1(x)v1(x) = 0 (54)

−ε2v′′2(x) + a2(x)v2(x) = 0 (55)

on [0, 1] with initial conditions

v1(0) = v2(0) = 0

v′1(0) = v′2(0) 6= 0.

Suppose a1(x) ≥ a2(x) for all x ∈ [0, 1]. Then if v1(x1) = 0 for some x1 ∈ (0, 1]

then v2(x2) = 0 for some x2 ∈ (0, x1].

Now given a fixed equilibrium u(x) that is an ω-limit point of a point on

the pseudo-unstable manifold, let v(x) = u′(x). Clearly v satisfies

−ε2v′′(x) + W ′′(u(x))v(x) = 0

with boundary conditions

v(0) = v(1) = 0.
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Since energy decreases along trajectories of the Cahn-Hilliard equation, it is

impossible for u to be the homogeneous equilibrium u ≡ M . This means

that v′(0) 6= 0 since, otherwise, the uniqueness of solutions to initial value

problems would imply that v ≡ 0. Hence, Proposition 1 can be applied with

either v = v1 or v = v2 if a suitable complementary comparison function can be

found. Let a+ = sups∈[0,1] W
′′(u(s)), and let a− = infs∈[0,1] W

′′(u(s)). Applying

Proposition 1 with a1(x) ≡ a+, a2(x) ≡ W ′′(u(x)), and v′1(0) = v′2(0) = v(0)

gives the estimate that the first positive zero of v2(x) ≡ v(x) comes no later

than the first positive zero of

v1(x) ≡ εv′(0)√
−a+

sin

(√
−a+

ε
x

)

if a+ < 0. This means that the transition width 1/(kn0) of u is less than or

equal to
πε√
−a+

if a+ < 0. Written another way,

−π2ε2k2n2
0 ≤ a+, (56)

and this clearly holds if a+ ≥ 0, as well. On the other hand, applying Propo-

sition 1 with a1(x) ≡ W ′′(u(x)), a2(x) ≡ a−, and the same initial conditions

as before gives the estimate

a− ≤ −π2ε2k2n2
0. (57)

Since (56) and (57) estimate the range of W ′′ ◦ u, they give bounds on the

amplitude of u. To see whether these bounds are meaningful, it helps to recall

the value of n0. In Section 3.1 it was shown that∣∣∣∣∣n0 −
β

επ
√

2

∣∣∣∣∣ < 1,

so

n0 =
β

επ
√

2
+ O(1)

as ε→ 0. Therefore,

−π2ε2k2n2
0 = −β2k2

2
+ O(ε) =

k2W ′′(M)

2
+ O(ε).

Substituting this into (56) and (57) and using the definition of a±, we have
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inf
s∈[0,1]

W ′′(u(s)) ≤ k2W ′′(M)

2
+ O(ε) ≤ sup

s∈[0,1]
W ′′(u(s)). (58)

Now since the average value of u is M ,

inf
s∈[0,1]

W ′′(u(s)) ≤W ′′(M) ≤ sup
s∈[0,1]

W ′′(u(s)). (59)

No matter what the value of k, (58) and (59) together give a lower bound on the

amplitude of u, which does not go to 0 as ε→ 0. The closer M is to the center

of the spinodal region, the better that bound is. Also, since W ′′ is bounded

below, the first estimate in (58) will give a contradiction for k sufficiently large.

In fact, if M is sufficiently close to the center (and ε is not too large) it will

give a contradiction for any k > 1, so, in this case, each relevant equilibrium

u has exactly the same minimal period as the fastest-growing mode.

In any case, the calculations of this section have shown that all ω-limit

points of nonzero points on the pseudo-unstable manifold are equilibria with

period O(ε) and amplitude bounded away from 0. Anything close to one

of these equilibria in the L∞ norm (a fortiori in the H2 norm) will exhibit

the small-wavelength large-amplitude oscillations characteristic of the spinodal

decomposition observed in experiments.

4.3 Orbits Approaching the ω-limit Points

In the previous two sections, the foundation has been laid for the application

of the abstract results in Section 3 to the Cahn-Hilliard equation to show the

predominance of spinodal decomposition. The following theorems are now

immediate consequences of Corollary 2, Theorem 3, and Theorem 5. Several

of the hypotheses are essentially the same for all theorems, so they will first

be listed separately.

Let M lie in the spinodal region of W , and let cos n0πx be the unique

fastest-growing mode of the linearization of the one-dimensional Cahn-Hilliard

equation about M . Consider the linear manifold consisting of all H2 functions

on [0, 1] that have average value M and satisfy Neumann boundary conditions.

Let Ω be any neighborhood (in this manifold) of the collection of equilibria

of the Cahn-Hilliard equation having average value M and minimal period of

the form 2/(kn0) for some positive integer k. Let Ω′ consist of all initial data

that produce orbits entering Ω in positive time.

Theorem 6 Let u0 be any point on the linear manifold of functions with mass

M that is not H2-orthogonal to cos n0πx. If |ρ| is sufficiently small then the
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solution of the Cahn-Hilliard equation with initial data M + ρ(u0−M) enters

Ω in positive time; i.e., M + ρ(u0 −M) ∈ Ω′.

Theorem 7 Let P be the projection defined by

P

(
M +

∞∑
n=0

an cos nπx

)
= M + an0 cos n0πx.

Let λn0 be the growth rate of the fastest-growing mode of the linearization about

u ≡ M (as described in Section 2), and let λn1 be the growth rate of the next

fastest-growing mode. Then if

p < min

{
λn0

λn1

, 2

}
,

there exist r > 0 and C > 0 such that if

C‖u0 − Pu0‖pH2 < ‖Pu0 −M‖H2 < r

then u0 ∈ Ω′.

Theorem 8 Let ϕ be any Gaussian measure of mean M on the manifold of

mass M (i.e., a measure induced by a Gaussian measure of mean 0 on the

parallel linear space) such that the induced distribution of 〈·, cosn0πx〉 has

nonzero variance. Let ϕδ be the scaled Gaussian measure on the manifold

defined by

ϕδ(E) = ϕ
(

1

δ
(E −M) + M

)
for any Borel set E contained in the manifold. If p is as in Theorem 7 then

ϕδ(Ω
′) = 1−O(δp−1)

as δ → 0.

All of these theorems are precise ways of stating that most choices of initial

data near a constant in the spinodal region produce solutions that eventually

exhibit spinodal decomposition.

4.4 Generalizations and Nongeneric Cases

As was shown above, the abstract results from Section 3 can be applied to the

Cahn-Hilliard equation on any domain Ω such that ∂Ω is sufficiently smooth

and dim(Ω) ≤ 3. The difficulty is in obtaining sufficient information about
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the ω-limit sets of the points on the pseudo-unstable manifold. Suppose, for

example, that

Ω = [0, x0]× [0, y0] ⊂ R2.

The linearization of (1) about a constant M in the spinodal region is

ut = −ε2 (uxxxx + 2uxxyy + uyyyy)− β2 (uxx + uyy) (x, y) ∈ Ω (60)

ux = uxxx + uyyx = 0 x ∈ {0, x0}
uy = uyyy + uxxy = 0 y ∈ {0, y0}.

Substituting

u = an,m cos
nπx

x0
cos

mπy

y0
,

a typical eigenfunction of the Laplacian on Ω, into (60) yields

an,m(t) = an,m(0) exp(λn,mt),

where

λn,m = rn,m(β2 − ε2rn,m),

and

rn,m =
(

nπ

x0

)2

+

(
mπ

y0

)2

= π2

(
n2

x2
0

+
m2

y2
0

)
.

If x2
0/y

2
0 is irrational then, as when Ω = [0, 1], for all but a discrete set

of ε, there will be a unique fastest-growing mode for (60). Also, because

the Cahn-Hilliard equation has symmetry-preserving properties on rectangles

analogous to those on intervals, the relevant ω-limit points will all have a small-

wavelength periodic structure with characteristic length scale O(ε). However,

some information on the amplitude of the ω-limit points must be obtained in

order for the abstract results to imply spinodal decomposition. It is not obvious

that these amplitudes could not be arbitrarily small, and if that happens

then the appearance of spinodal decomposition has not been justified, since

solutions with small amplitude have not decomposed at all.

If x2
0/y

2
0 is rational then the set of ε for which the pseudo-unstable manifold

is one-dimensional may no longer be everywhere dense. When the pseudo-

unstable manifold and subspace are of higher dimension then the smallest

subspace that is invariant under (1) and contains the pseudo-unstable subspace

is, in general, the entire space. Thus, for such ε the ω-limit points may not be

periodic with small wavelength. The same problem occurs at a discrete set of

ε in the one-dimensional case. It may be possible to explain the appearance

of spinodal decomposition in these pathological cases by some other methods,

such as phase plane analysis on the pseudo-unstable manifold.
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ond ed., 1982.



SPINODAL DECOMPOSITION 489

[11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, vol. 840

of Lecture Notes in Mathematics, Springer-Verlag, New York, 1981.

[12] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant Manifolds, vol. 583

of Lecture Notes in Mathematics, Springer-Verlag, New York, 1977.

[13] H.-H. Kuo, Gaussian Measures in Banach Spaces, vol. 463 of Lecture

Notes in Mathematics, Springer-Verlag, New York, 1975.

[14] K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equa-

tions, Tech. Rep. 686, Institute for Mathematics and its Applications,

Sept. 1990.

[15] L. Modica, The gradient theory of phase transitions and the minimal in-

terface criterion, Arch. Rational Mech. Anal., 98 (1987), pp. 123–142.

[16] J. R. Munkres, Topology: A First Course, Prentice-Hall, Englewood Cliffs,

New Jersey, 1975.

[17] B. Nicolaenko and B. Scheurer, Low dimensional behaviour of the pattern

formation Cahn-Hilliard equation, in Trends and Practice of Nonlinear

Analysis, Lakshimikantham, ed., North Holland, 1985.

[18] A. Novick-Cohen and L. A. Segel, Nonlinear aspects of the Cahn-Hilliard

equation, Phys. D, 10 (1984), pp. 277–298.

[19] A. Pazy, Semigroups of Linear Operators and Applications to Partial Dif-

ferential Equations, vol. 44 of Applied Mathematical Sciences, Springer-

Verlag, New York, 1983.

[20] S. M. Rankin, III, Semilinear evolution equations in Banach spaces with

application to parabolic partial differential equations. Trans. Amer. Math.

Soc., to appear.

[21] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, third ed.,

1987.

[22] A. Skorohod, Integration in Hilbert Space, vol. 79 of Ergebnisse der Math-

ematik und ihrer Grenzgebiete, Springer-Verlag, New York, 1974.

[23] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and

Physics, vol. 68 of Applied Mathematical Sciences, Springer-Verlag, New

York, 1988.



490 GRANT

[24] J. D. van der Waals, The thermodynamic theory of capillarity flow under

the hypothesis of a continuous variation in density, Verhandelingen der

Koninklijke Nederlandsche Akademie van Wetenschappen te Amsterdam,

1 (1893), pp. 1–56.

[25] S. Zheng, Asymptotic behavior of solution to the Cahn-Hilliard equation,

Appl. Anal., 23 (1986), pp. 165–184.


