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Abstract. We announce recent results obtained through a combination of

asymptotic ODE estimates and numerical Evans function calculations, which
together yield stability of isentropic Navier–Stokes shocks for a γ-law gas with

1 ≤ γ ≤ [1, 2.5]. Other γ may be treated similarly.

1. Introduction

The isentropic compressible Navier-Stokes equations in one spatial dimension
expressed in Lagrangian coordinates take the form

vt − ux = 0,

ut + p(v)x =
(ux

v

)
x

,
(1)

where v is specific volume, u is velocity, and p pressure. We assume an adiabatic
pressure law p(v) = a0v

−γ corresponding to a γ-law gas, for some constants a0 > 0
and γ ≥ 1.

These equations are well known to support “viscous shock layers”, or asymptotically-
constant traveling-wave solutions

(2) (v, u)(x, t) = (v̂, û)(x− st), lim
z→±∞

(v̂, û)(z) = (v, u)±.

In nature, such waves are seen to be quite stable, even for large variations in
pressure between v±. It is a fundamental question whether and to what extent
this is reflected in the continuum-mechanical model (1), that is, for which choice
of parameters (v, u)±, γ solutions (2) are stable in the sense of time-evolutionary
PDE.

Substantial progress in the form of “Lyapunov-type” theorems established in
[5, 8] has reduced the problem of linearized and nonlinear stability to determination
of spectral stability, i.e., the study of the associated eigenvalue ODE. However, until
recently, the only results on the spectral stability problem were for small-amplitude
shocks [6, 4] or the special case γ = 1 [6, 5], with the large-amplitude case remaining
essentially open.

The purpose of this note is to announce the resolution of this problem in [1, 3]
by a combination of asymptotic ODE and numerical Evans function computations:
specifically, the result of unconditional stability of arbitrary-amplitude isentropic
Navier–Stokes shocks for 1 ≤ γ ≤ 2.5. Other γ may be treated by the same methods
but were not considered.
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2. The rescaled equations

Taking (x, t, v, u, a0) → (−εs(x − st), εs2t, v/ε,−u/(εs), a0ε
−γ−1s−2), with ε so

that 0 < v+ < v− = 1, we consider stationary solutions (v̂, û)(x) of

vt + vx − ux = 0,

ut + ux + (av−γ)x =
(ux

v

)
x

.
(3)

2.1. Profile equation. Steady shock profiles of (3) satisfy

(4) v′ = H(v, v+) := v(v − 1 + a(v−γ − 1)),

where a is found by H(v+, v+) = 0, yielding the Rankine-Hugoniot condition

(5) a = − v+ − 1
v−γ
+ − 1

= vγ
+

1− v+

1− vγ
+

.

Evidently, a → γ−1 in the weak shock limit v+ → 1, while a ∼ vγ
+ in the strong

shock limit v+ → 0. In this scaling, the large-amplitude limit corresponds to the
limit as v+ → 0, or density ρ+ := 1/v+ →∞.

2.2. Eigenvalue equations. Linearizing (3) about the profile (v̂, û) and integrat-
ing with respect to x, we obtain the integrated eigenvalue problem

λv + v′ − u′ = 0,(6a)

λu + u′ − h(v̂)
v̂γ+1

v′ =
u′′

v̂
,(6b)

where h(v̂) = −v̂γ+1 + a(γ − 1) + (a + 1)v̂γ . Spectral stability of v̂ corresponds to
nonexistence of solutions of (6) decaying at x = ±∞ for <eλ ≥ 0 [4, 1, 3].

3. Preliminary estimates

Proposition 3.1 ([1]). For each γ ≥ 1, 0 < v+ ≤ 1, (4) has a unique (up to
translation) monotone decreasing solution v̂ decaying to its endstates with a uniform
exponential rate. For 0 < v+ ≤ 1

12 and v̂(0) := v+ + 1
12 ,

|v̂(x)− v+| ≤
( 1

12

)
e−

3x
4 x ≥ 0,(7a)

|v̂(x)− v−| ≤
(1

4

)
e

x+12
2 x ≤ 0.(7b)

Proof. Existence and monotonicity follow trivially by the fact that (4) is a scalar
first-order ODE with convex righthand side. Exponential convergence as x → +∞

follows by H(v, v+) = (v−v+)
(
v−
(

1−v+
1−vγ

+

)(
1−
(

v+
v

)γ

1−
(

v+
v

) )), whence v−γ ≤ H(v,v+)
v−v+

≤

v − (1− v+) by 1 ≤ 1−xγ

1−x ≤ γ for 0 ≤ x ≤ 1. See [1]. �

Proposition 3.2 ([6]). Viscous shocks of (1) are spectrally stable whenever
( vγ+1

+
aγ

)2+
2(γ − 1)

( vγ+1
+
aγ

)
− (γ − 1) ≥ 0, in particular, for |v+ − 1| << 1.
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Proof. Writing (6) as Ut + A(x)Ux = B(x)Uxx, with A =
(

1 −1
− h(v̂)

v̂γ+1 1

)
, B =(

0 0
0 1

v̂

)
, we see that S =

(
1 0
0 v̂γ+1

h(v̂)

)
symmetrizes A, B. Taking the L2 complex

inner product of SU against the equations yields

<eλ〈U, SU〉+ 〈U ′, SBU ′〉 = −〈u, g(v̂)u〉,
where the righthand side, coming from commutator terms, is of favorable sign for
v+ satisfying the condition of the proposition. See [6, 1]. �

Proposition 3.3 ([1]). Nonstable eigenvalues λ of (6), i.e., eigenvalues with non-
negative real part, are confined for any γ ≥ 1, 0 < v+ ≤ 1 to the region Λ defined
by

(8) <e(λ) + |=m(λ)| ≤
(√

γ +
1
2

)2

.

Proof. Energy estimates related to those of Proposition 3.2. See [1]. �

4. Evans function formulation

Following [1], we may express (6) as a first-order system W ′ = A(x, λ)W,

(9) A(x, λ) =

 0 λ 1
0 0 1
λv̂ λv̂ f(v̂)− λ

 , W =

u
v
v′

 , ′ = d

dx
,

(10) f(v̂) = 2v̂ − (γ − 1)
(1− v+

1− vγ
+

)(v+

v̂

)γ

−
(1− v+

1− vγ
+

)
vγ
+ − 1.

Eigenvalues of (6) correspond to nontrivial solutions W for which the boundary
conditions W (±∞) = 0 are satisfied. Because A(x, λ) as a function of v̂ is asymp-
totically constant in x, the behavior near x = ±∞ of solutions of (9) is governed
by the limiting constant-coefficient systems

(11) W ′ = A±(λ)W, A±(λ) := A(±∞, λ).

We readily find on the (nonstable) domain <eλ ≥ 0, λ 6= 0 of interest that there
is a one-dimensional unstable manifold W−

1 (x) of solutions decaying at x = −∞
and a two-dimensional stable manifold W+

2 (x) ∧ W+
3 (x) of solutions decaying at

x = +∞, analytic in λ, with asymptotic behavior

(12) W±
j (x, λ) ∼ eµ±(λ)xV ±

j (λ)

as x → ±∞, where µ±(λ) and V ±
j (λ) are eigenvalues and associated analytically

chosen eigenvectors of the limiting coefficient matrices A±(λ).
A standard choice of eigenvectors V ±

j [2], uniquely specifying D (up to constant
factor) is obtained by Kato’s ODE, a linear, analytic ODE whose solution can
be alternatively characterized by the property that there exist corresponding left
eigenvectors Ṽ ±

j such that, denoting d/dλ by “ ˙ ”

(13) (Ṽ · V )± ≡ constant, (Ṽ · V̇ )± ≡ 0,

Defining the Evans function D associated with operator L as

(14) D(λ) := det(W−
1 W+

2 W+
3 )|x=0,
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we find that D is analytic on <eλ ≥ 0, with eigenvalues of L corresponding in
location and multiplicity to zeroes of D. See [8] for further details.

4.1. Example. Consider Burgers’ equation, ut + (u2)x = uxx, and the family of
stationary viscous shock solutions

(15) ûε(x) := −ε tanh(εx/2), lim
z→±∞

ûε(z) = ∓ε,

with associated integrated eigenvalue equations w′′ = ûεw′ + λw. By a linearized
Hopf–Cole transformation [3], we may compute the associated Evans functions
explicitly to be not only stable but identically constant,

(16) Dε(λ) ≡ −2
√

ε2/4 + 1,

and converging in the weak shock limit ε → 0 to a nonzero constant. Burgers’
equation models behavior in the weak shock limit of general systems; see, e.g., [7].

5. Main results

5.1. The strong shock limit. Taking a formal limit as v+ → 0 of the rescaled
equations (3) and recalling that a ∼ vγ

+, we obtain a limiting evolution equation

vt + vx − ux = 0,

ut + ux =
(ux

v

)
x

(17)

corresponding to a pressure-less gas, or γ = 0.
The associated limiting profile equation v′ = v(v−1) has explicit solution v̂0(x) =

1−tanh(x/2)
2 ; the limiting eigenvalue system is W ′ = A0(x, λ)W,

(18) A0(x, λ) =

 0 λ 1
0 0 1

λv̂0 λv̂0 f0(v̂0)− λ

 ,

where f0(v̂0) = 2v̂0 − 1 = − tanh(x/2).
Observe that the limiting coefficient matrix A0

+(λ) := A0(+∞, λ) is nonhyper-
bolic (in ODE sense) for all λ, having eigenvalues 0, 0,−1 − λ; in particular, the
stable manifold drops to dimension one in the limit v+ → 0, and so the prescription
of an associated Evans function is underdetermined.

This difficulty is resolved by a careful boundary-layer analysis in [3], determining
a special “slow stable” mode V +

2 ± (1, 0, 0)T augmenting the “fast stable” mode
V3 := (a−1(λ/a+1), a−1, 1)T associated with the single stable eigenvalue a = −1−λ
of A0

+. This determines a limiting Evans function D0(λ) by the prescription (14),
(12) of Section 4.

Theorem 5.1 ([3]). For λ in any compact subset of <eλ ≥ 0, D(λ) converges
uniformly to D0(λ) as v+ → 0.

Proof. Careful boundary layer analysis/asymptotic ODE estimates [3, 7]. �

Proposition 5.2 ([3]). The limiting function D0 is nonzero on <eλ ≥ 0.

Proof. Energy estimate adapted from that of Proposition 3.2. �

Corollary 5.3. For any γ ≥ 1, isentropic Navier–Stokes shocks are stable in the
strong shock limit, i.e., for v+ sufficiently small.
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Figure 1. Convergence to the limiting Evans function as v+ → 0
for a monatomic gas, γ = 5/3. The contours depicted, going
from inner to outer, are images of the semicircle under D for
v+ =1e-1,1e-2,1e-3,1e-4,1e-5,1e-6. The outermost contour
is the image under D0, which is nearly indistinguishable from the
image for v+ =1e-6.

5.2. The weak shock limit. Stability in the weak shock limit is known [6]. How-
ever, combining the calculation of Section 4.1 with asymptotic ODE estimates es-
timates of [7], we obtain the new observation that the Evans function converges in
the weak shock limit to a constant function.

5.3. Intermediate strength shocks. Having disposed analytically of the weak
and strong shock limits, we have reduced the problem of shock stability to a
bounded parameter range on which the Evans function may be effiently computed
numerically, in uniformly well-conditioned fashion; see [2]. Specifically, we may
map a semicircle ∂{<eλ ≥ 0}∩{|λ| ≤ 10} enclosing Λ for γ ∈ [1, 3] by D0 and com-
pute the winding number of its image about the origin to determine the number of
zeroes of D0 within the semicircle, and thus within Λ. For details of the numerical
algorithm, see [1, 2].

Such a study was carried out systematically in [1] on the parameter range γ ∈
[1, 3], for shocks with Mach number M ∈ [1, 3, 000], which corresponds on γ ∈
[1, 2.5] to v+ ≥ 10−3, with the result of stability for all values tested. In combination
with the results of Sections 5.1 and 5.2, this gives convincing numerical evidence, as
claimed, of unconditional stability of isentropic Navier–Stokes shocks for γ ∈ [1, 2.5]
and arbitrary amplitude.

5.4. Global picture. In Figure 1, we superimpose on the numerically computed
image of the semicircle by D0 its (numerically computed) image by the full Evans
function D, for a monatomic gas γ ≈ 1.66 at successively higher Mach numbers



6 BARKER, HUMPHERYS, LAFITTE, RUDD, AND ZUMBRUN

v+ =1e-1,1e-2,1e-3,1e-4,1e-5,1e-6, showing both convergence of D to D0 in
the strong shock limit as v+ approaches zero and convergence of D to a constant
in the weak shock limit v+ → 1.

Moreover, the displayed contours are, to the scale visible by eye, “monotone”
in v+, or nested, one within the other, with lower-Mach number contours are es-
sentially “trapped” within higher-Mach number contours, and all contours inter-
polating smoothly between this and the inner, constant limit. Behavior for other
γ ∈ [1, 3] is entirely similar; see [3]. That is, a great deal of topological infor-
mation is encoded in the analytic family of Evans functions indexed by v+, from
which stability may be deduced almost by inspection. Such topological information
does not seem to be available from other methods of investigating stability such as
direct discretation of the linearized operator about the wave, studies based on lin-
earized time-evolution, or power methods, and represents in our view a significant
advantage of the Evans function formulation.
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