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Abstract

Extending recent results in the isentropic case, we use a combination of
asymptotic ODE estimates and numerical Evans-function computations to examine
the spectral stability of shock-wave solutions of the compressible Navier–Stokes
equations with ideal gas equation of state. Our main results are that, in appropria-
tely rescaled coordinates, the Evans function associated with the linearized operator
about the wave (i) converges in the large-amplitude limit to the Evans function for
a limiting shock profile of the same equations, for which internal energy vanishes
at one end state; and (ii) has no unstable (positive real part) zeros outside a uni-
form ball |λ| � �. Thus, the rescaled eigenvalue ODE for the set of all shock
waves, augmented with the (nonphysical) limiting case, form a compact family of
boundary-value problems that can be conveniently investigated numerically. An
extensive numerical Evans-function study yields one-dimensional spectral stabi-
lity, independent of amplitude, for gas constant γ in [1.2, 3] and ratio ν/µ of heat
conduction to viscosity coefficient within [0.2, 5] (γ ≈ 1.4, ν/µ ≈ 1.47 for air).
Other values may be treated similarly but were not considered. The method of ana-
lysis extends also to the multi-dimensional case, a direction that we shall pursue in
a future work.
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1. Introduction

A long-standing question in gas dynamics is the stability of viscous shock
layers, or traveling-wave solutions

U (x, t) = Ū (x − st), lim
z→±∞ Ū (z) = U±,

of the compressible Navier–Stokes equations, where U (x, t) = (v, u, E)T is a
vector recording specific volume, velocity, and total energy of the fluid at loca-
tion x ∈ R and time t ∈ R

+. A closely related question is the relation between
Navier–Stokes solutions and solutions of the formally limiting Euler equations in
the limit as viscosity and heat conduction coefficients go to zero: more precisely,
validity of formal matched asymptotics predicting that the Navier–Stokes solu-
tion consists approximately of an Euler solution with smooth viscous shock layers
replacing discontinuous Euler shocks.

Recent progress in the form of “Lyapunov-type” theorems established in
[22–24,36,54] has reduced both problems to determination of spectral stability
of shock layers, that is, the study of the eigenvalue ODE associated with the linea-
rized operator about the wave: a standard analytically and numerically well-posed
(boundary value) problem in ODE that can be attacked by the large body of tech-
niques developed for asymptotic, exact, and numerical study of ODE. Indeed, the
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cited results hold for a substantially more general class of equations, and in one-
or multi-dimensions.

In [15,16,30,42], it has been established in a similarly general context (general
equations, one- and multi-dimensions), using asymptotic ODE techniques, that
spectral stability holds always in the small-amplitude limit, where amplitude is
measured by |U+ − U−|, that is, for shocks sufficiently close to a constant solu-
tion, thus satisfactorily resolving the long-time stability and small-viscosity limit
problems for small-variation solutions.

However, until very recently, the spectral stability of large-amplitude shock
waves has remained from a theoretical viewpoint essentially open, the sole excep-
tions being (i) a result of stability of Navier–Stokes shocks for isentropic gas dyna-
mics with γ -law gas in the special case γ → 1, obtained early on by Matsumura
and Nishihara [37] by virtue of an ingenious energy estimate specific to that case;
and (ii) a result of Zumbrun [53]—again obtained by energy estimates special to
the model—which establishes the stability of stationary phase-transitional shocks
of an isentropic viscous-capillary van der Waals model introduced by Slemrod
[48].

Progress instead has focused, quite successfully, on the development of effi-
cient and general numerical methods for the study of stability of individual waves,
or compact families of waves, of essentially arbitrary systems; see, for example,
[3,5–8,31]. These techniques, based on Evans-function computations, effectively
resolve the question of spectral stability for waves of large but finite amplitude, but
leave open the question of stability in the large-amplitude limit. For discussion of
the Evans function and its numerical computation, see [1,3,8,19,54] or Section 3.4
below.

Quite recently, however, Humpherys et al. [27] have introduced a new strategy
combining asymptotic ODE techniques with numerical Evans-function computa-
tions, by which they were able to carry out a global analysis of shock stability in the
isentropic γ -law case, yielding stability independent of amplitude for γ ∈ [1, 3].1
Specifically, after an appropriate rescaling, they showed by a detailed asympto-
tic analysis of the linearized eigenvalue ODE that the associated Evans functions
(determining stability of the viscous shock profile) converge in the large-amplitude
limit to an Evans function associated with their formal limit, which may then be stu-
died either numerically or analytically (for example, by energy estimate as in [27]).

The purpose of the present paper is to extend the approach of [27] to the full
(nonisentropic) Navier–Stokes equations of compressible gas dynamics with ideal
gas equation of state, resolving in this fundamental case the long-standing questions
of viscous shock stability and behavior in the small-viscosity limit. Specifically,
we show, as in the isentropic case, that the Evans function indeed converges in
the large-amplitude limit, to a value corresponding to the Evans function of a
limiting system. Compactifying the parameter range by adjoining this limiting
system, we then carry out systematic numerical Evans-function computations as in
[3,27] to determine stability for gas constant γ ∈ [1.2, 3] and (rescaled) ratio of heat
conduction to viscosity coefficient ν/µ ∈ [0.2, 5], including the physical values

1 Other γ may be treated similarly but were not considered.
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given in Appendices A and B. The result, as in the isentropic case, is unconditional
stability, independent of amplitude for an ideal gas equation of state.

1.1. Discussion and open problems

The asymptotic analysis of [27] is quite delicate; it depends sensitively both on
the use of Lagrangian coordinates and on the precise way of writing the eigenvalue
ODE as a first-order system. It is thus not immediately clear that the analysis can be
extended to the more complicated nonisentropic case. Moreover, since Lagrangian
coordinates—specifically, the associated change of spatial variable

dx̃/dx = ρ(x), (1.1)

where ρ is density—are not available in multi-dimensions, it is likewise, at first
glance, unclear how how to extend the analysis beyond one spatial dimension.

Remarkably, we find that the structure of the full, physical equations is much
more amenable to the analysis than that of the isentropic model. In particular, whe-
reas in the isentropic case the eigenvalue equations in the large-amplitude limit are
a nonstandard singular perturbation of the limiting equations that must be analyzed
“by hand”, in the full (nonisentropic) gas case, they are a regular perturbation for
which convergence may be concluded by standard theorems on continuous depen-
dence of the Evans function with respect to parameters; see, for example, the basic
convergence lemma of [42].

Indeed, for γ bounded away from the nonphysical case γ = 1 (see Section 2 for
a description of the equations and the physical background), we have the striking
difference that, for a fixed left end state U−, the density remains uniformly bounded
above and below for all viscous shock profiles connecting U− to a right state
U+, with energy going to infinity in the large-amplitude limit. By contrast, in the
isentropic case, the density is artificially tied to energy and thus density goes to
infinity in the large-amplitude limit for any γ � 1; see, for example, [44,45,49].
This untangling of the large-amplitude behaviors of the density and the energy sets
the stage for our analysis. Below, to see this untangling, instead of fixing a left
end state U− and asking which right end states U+ may be connected to U− by a
viscous shock profile, we fix the shock speed s = −1 and all coordinates of the left
state U− except the energy. We find again that the density stays bounded above and
below for all possible right states U+ connected by a shock profile to some such
U−.

Since the equations remain regular so long as density is bounded from zero
and infinity, one important consequence of this fact is that we need only check a
few basic properties such as uniform decay of profiles and continuous extension of
stable/unstable subspaces to conclude that the strong-shock limit is in the nonisen-
tropic case a regular perturbation of the limiting system as claimed; see Section 3
for details.

A second important consequence is that Lagrangian and Eulerian coordinates
are essentially equivalent in the nonisentropic case so long as γ remains uniformly
bounded from 1, whereas, in the isentropic case, the equations become singular
for Eulerian (x) coordinates in the large-amplitude limit, by (1.1) together with the
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fact that density goes to infinity. Here, we have chosen to work with Lagrangian
coordinates for comparison with previous one-dimensional analyses in the isen-
tropic case [3,12,27]. However, we could just as well have worked in Eulerian
coordinates, including full multi-dimensional effects, to obtain by the same argu-
ments that the large-amplitude limit is a regular perturbation of the (unintegrated)
limiting eigenvalue equation, and therefore the Evans functions converge in the
limit also in this multi-dimensional setting.

Likewise, uniform bounds on unstable eigenvalues may be obtained in multi-
dimensions by adapting the asymptotic analysis of [22] similarly as we have adap-
ted in Section 4 the asymptotic analysis of [35]. Thus, for γ uniformly bounded
from 1, the analysis of this paper extends with suitable modification to the multi-
dimensional case, making possible the resolution of multi-dimensional viscous
stability by a systematic numerical Evans-function study as in the one-dimensional
case. We shall carry out the multi-dimensional analysis in a following work [28].

Presumably, the same procedure of compactifying the parameter space after
rescaling to bounded domain would work for any gas law with appropriate asymp-
totic behavior as ρ, e → ∞. Thus, we could in principle investigate also van der
Waals gas/fluids, for example, which could yield interesting different behavior: in
particular, (as known already from stability index considerations [46,54]) insta-
bility in some regimes. Other interesting areas for investigation include the study
of boundary layer stability (see [12] for an analysis of the isentropic case), and
stability of weak and strong detonation solutions (analogous to shock waves) of
the compressible Navier–Stokes equations for a reacting gas. A further interesting
direction is to investigate the effects of temperature dependence of viscosity and
heat conduction on behavior for large amplitudes; see Appendices B.2 and F.

In this work, we have restricted to the parameter range γ ∈ [1.2, 3] and ν/µ ∈
[0.2, 5], where γ is the gas constant, ν = κ/cv is a rescaled coefficient of heat
conduction (κ the Fourier conduction and cv specific heat), and µ is the coefficient of
viscosity; see Equations (2.1)–(2.3), Section 2. Similar computations may be carried
out for arbitrary γ bounded away from the nonphysical limit γ = 1. To approach the
singular limit γ = 1 would presumably require a nonstandard singular perturbation
analysis like that of [27] in the isentropic case, as the structure is similar; see
Remark 2.2. The limits ν/µ → 0 and ν/µ → ∞ are more standard singular
perturbations with fast/slow structure that should be treatable by the methods of
[1]; this would be a very interesting direction for further study. We note that our
results for large ν/µ do indicate possible further simplification in behavior, as the
singular perturbation structure would suggest; see Remark 4.5 and Fig. 4. For dry
air at normal temperatures, γ ≈ 1.4 and ν/µ ≈ 1.47, well within range; see
Appendix A.

Finally, we mention the issue of rigorous verification. Our results, though based
on rigorous analysis, do not constitute numerical proof, and are not intended to. In
particular, we do not use interval arithmetic. Nonetheless, the numerical evidence
for stability appears overwhelming, particularly in view of the fact that the family
{D(λ, v+)} of Evans contours estimated in the stability computations is analytic in
both parameters, yielding extremely strong interpolation estimates by the rigidity
of analytic functions.
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In any case, our analysis contains all of the elements necessary for numerical
proof, the effective realization of which, however, is a separate problem of inde-
pendent interest. Given the fundamental nature of the problem, we view this as an
important area for further investigation.

1.2. Plan of the paper

In Section 2, we set up the problem, describing the equations, rescaling appro-
priately, and verifying existence and uniform decay of profiles independent of shock
strength. In Section 3, we construct the Evans function and establish the key fact
that it is continuous in all parameters up to the strong-shock limit. In Section 4,
we carry out the main technical work of the paper, establishing an upper bound on
the modulus of unstable eigenvalues of the linearized operator about the wave in
terms of numerically approximable quantities associated with the traveling-wave
profile. In Section 5, we describe our numerical method, first estimating a maximal
radius within which unstable eigenvalues are confined, then computing the winding
number of the Evans function around the semicircle with that radius to estimate the
number of unstable eigenvalues, for (a discretization of) all parameters within the
compact parameter domain, including the strong-shock limit. Finally, in Section 6,
we perform the numerical computations indicating stability.

In Appendices A and B, we discuss further the dimensionless constants � and
ν/µ, and determine their values for air and other common gases. In Appendix C, we
discuss equations of state for fluids and dense gases. In Appendix D, we compute
a formula for the Mach number, a useful dimensionless quantity measuring shock
strength independent of scaling. In Appendix E, we give a general bound on the
operator norm of lifted matrices acting on exterior products, useful for analysis of
the exterior-product method of [6,5]. In Appendix F, we discuss the changes needed
to accommodate temperature-dependence in the coefficients of viscosity and heat
conduction, as predicted by the kinetic theory of gases.

2. Preliminaries

In Lagrangian coordinates, the Navier–Stokes equations for compressible gas
dynamics take the form

vt − ux = 0, (2.1)

ut + px =
(µux

v

)
x
, (2.2)

Et + (pu)x =
(µuux

v

)
x

+
(

κTx

v

)

x
, (2.3)

where v is the specific volume, u is the velocity, p is the pressure, and the energy
E is made up of the internal energy e and the kinetic energy:

E = e + u2

2
. (2.4)
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The constants µ and κ represent viscosity and heat conductivity. Finally, T is the
temperature, and we assume that the internal energy e and the pressure p are known
functions of the specific volume and the temperature:

p = p0(v, T ), e = e0(v, T ).

An important special case occurs when we consider an ideal, polytropic gas. In
this case the energy and pressure functions take the specific form

p0(v, T ) = R̄T

v
, e0(v, T ) = cvT, (2.5)

where R̄ > 0 and cv > 0 are constants that characterize the gas. Alternatively, the
pressure may be written as

p = �e

v
, (2.6)

where � = γ − 1 = R̄
cv

> 0, γ > 1 the adiabatic index. Equivalently, in terms of
the entropy and specific volume, the pressure reads

p(v, S) = aeS/cv v−γ ,

where S is thermodynamical entropy, or p(v) = av−γ in the isentropic approxi-
mation (see [3,27,49]).

In the thermodynamical rarefied gas approximation, γ > 1 is the average over
constituent particles of γ = (N +2)/N , where N is the number of internal degrees
of freedom of an individual particle, or, for molecules with “tree” (as opposed to
ring, or other more complicated) structure,

γ = 2n + 3

2n + 1
, (2.7)

where n is the number of constituent atoms [4]: γ = 5/3 ≈ 1.66 for monatomic,
γ = 7/5 = 1.4 for diatomic gas. For fluids or dense gases, γ is typically determined
phenomenologically [26]. In general, γ is usually taken within 1 � γ � 3 in
models of gas-dynamical flow, whether phenomenological or derived by statistical
mechanics [44,45,49].

2.1. Viscous shock profiles

A viscous shock profile of (2.1)–(2.3) is a traveling-wave solution,

v(x, t) = v̂(x − st), u(x, t) = û(x − st), T (x, t) = T̂ (x − st), (2.8)
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moving with speed s and connecting constant states (v±, u±, T±). Such a solution
is a stationary solution of the system of PDEs

vt − svx − ux = 0, (2.9)

ut − sux + p0(v, T )x =
(µux

v

)
x
, (2.10)

(
e0(v, T ) + u2

2

)

t
− s

(
e0(v, T ) + u2

2

)

x
+ (p0(v, T )u)x

=
(µuux

v

)
x

+
(

κTx

v

)

x
. (2.11)

2.2. Rescaled equations

Under the rescaling

(x, t, v, u, T ) →
(
−εsx, εs2t, v/ε,−u/(εs), T/(ε2s2)

)
, (2.12)

where ε is chosen so that v− = 1, the system (2.9)–(2.11) becomes

vt + vx − ux = 0, (2.13)

ut + ux + px =
(µux

v

)
x
, (2.14)

Et + Ex + (pu)x =
(µuux

v

)
x

+
(

κTx

v

)

x
, (2.15)

where the pressure and internal energy in the (new) rescaled variables are given by

p(v, T ) = ε−1s−2 p0(εv, ε2s2T ) (2.16)

and

e(v, T ) = ε−2s−2e0(εv, ε2s2T ); (2.17)

in the ideal gas case, the pressure and internal energy laws remain unchanged

p(v, T ) = R̄T

v
, e(v, T ) = cvT, (2.18)

with the same R̄, cv . Likewise, � remains unchanged in (2.6).

2.3. Rescaled profile equations

Viscous shock profiles of (2.13)–(2.15) satisfy the system of ordinary differen-
tial equations

v′ − u′ = 0, (2.19)

u′ + p(v, T )′ =
(

µu′

v

)′
, (2.20)

[
e(v, T ) + u2/2

]′ + (p(v, T )u)′ =
(

µuu′

v

)′
+

(
κT ′

v

)′
, (2.21)
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together with the boundary conditions

(v(±∞), u(±∞), T (±∞)) = (v±, u±, T±) .

Evidently, we can integrate each of the differential equations from −∞ to x , and
using the boundary conditions (in particular v− = 1 and u− = 0), we find, after
some elementary manipulations, the profile equations:

µv′ = v
[
(v − 1) + p(v, T ) − p(v−, T−)

]
, (2.22)

κT ′ = v

[
e(v, T ) + (v − 1)2

2
− e(v−, T−)

]
+ v(v − 1)

[
p(v−, T−) − (v − 1)

]
.

(2.23)

We note that in the case of an ideal gas, these ODEs simplify somewhat, to

v′ = 1

µ

[
v(v − 1) + �(e − ve−)

]
, (2.24)

e′ = v

ν

[
− (v − 1)2

2
+ (e − e−) + (v − 1)�e−

]
, (2.25)

where ν := κ/cv and � is as in (2.6).

Remark 2.1. Remarkably, the right-hand sides of the profile ODE are polynomial
in (v, e), so they remain smooth even for values on the boundaries v̂ = 0 or ê = 0
of the physical parameter range. This is in sharp contrast to the isentropic case
[3,27], for which the ODE become singular as v → 0, except in the special case
γ = 1.

2.4. Rankine–Hugoniot conditions

Substituting v+, u+, e+ into the rescaled profile equations (2.19)–(2.21) and
requiring that the right-hand side vanish yields the Rankine–Hugoniot conditions

− s[v] = [u], (2.26)

−s[u] = −[p], (2.27)

−s

[
e + u2

2

]
= −[pu], (2.28)

where [ f (U )] := f (U+) − f (U−) denotes jump between U±.
We focus now to the ideal gas case. Under the scaling (2.12), we have s = −1,

v− = 1, u− = 0. Fixing �max � � � �min > 0 and letting v+ vary in the range
1 � v+ � v∗(�) := �/(� + 2), we use (2.26)–(2.28) to solve for

u+, e+ and e−.
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Our assumptions reduce (2.26)–(2.28) to

v+ − 1 = u+, (2.29)

u+ = −(p+ − p−) = −�

(
e+
v+

− e−
)

, (2.30)

(e+ − e−) + u2+
2

= −p+u+ = −�
e+u+
v+

. (2.31)

Equation (2.29) immediately gives u+. Subtracting u+
2 times (2.30) from (2.31)

and rearranging, we obtain

e+ = e−
1 + �

2 (1 − v+)

1 − �
2v+ (1 − v+)

= e−v+
(� + 2)

(� + 2 − �v+))

(v+ − v∗)
, (2.32)

v∗ = �
�+2 , from which we obtain the physicality condition

v+ > v∗ := �

� + 2
, (2.33)

corresponding to positivity of the denominator, with e+
e− → +∞ as v → v∗. Finally,

substituting into 1 = s2 = −[p]
[v] and rearranging, we obtain

e− = (� + 2)(v+ − v∗)
2�(� + 1)

, (2.34)

and thus

e+ = v+(� + 2 − �v+)

2�(� + 1)
, (2.35)

completing the description of the end states.
We see from this analysis that the strong-shock limit corresponds, for fixed �,

to the limit v+ → v∗, with all other parameters functions of v+. In this limit,

v− = 1, u− = 0, e− ∼ (v+ − v∗) → 0, (2.36)

and

u+ ∼ (v+ − 1) → −2

� + 2
, e+ → 1 − v2∗

2(� + 1)
= 2

(� + 2)2 . (2.37)

At this point, taking without loss of generality µ = 1, we have reduced to a
three-parameter family of problems on compact parameter range, parametrized by
�max � � � �min > 0, 1 � v+ � v∗(�) � v∗(�min) > 0, and νmax � ν � νmin.

Remark 2.2. As � → 0, we find from (2.35) that e+ blows up as (v+−v∗)/�, that
is, our rescaled coordinates remain bounded only if v+ − v∗ � C� → 0, C > 0
constant, as well. (This is reflected in the limiting profile equation for � = 0, which
admits only profiles from v− = 1 to v+ = 0; see (2.25), which, for � = 0, reduces
to v′ = v(v−1).) Thus, our techniques apply for � → 0 only in the (simultaneous)
large-amplitude limit.
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2.5. Existence and decay of profiles

Continuing to specialize to the ideal gas case, we now study existence and
behavior of profiles. Existence and exponential decay of profiles has been esta-
blished by Gilbarg [21] for all finite-amplitude shocks 1 � v+ > v∗. Thus, the
question is whether these properties extend to the strong-shock limit, the main issue
being to establish uniform exponential decay as x → ±∞, independent of shock
strength.

Since the profile equations (2.24)–(2.25) are smooth (polynomial) in (v, e), the
issue of uniform decay reduces essentially to uniform hyperbolicity of end states
(v, e)±, that is, nonexistence of purely imaginary linearized growth/decay rates at
±∞. Linearizing (2.24)–(2.25) about an equilibrium state, we obtain

(
v

e

)′
= M

(
v

e

)
, M :=

(
µ−1 0

0 vν−1

) (
2v − 1 − �e− �

1 − v + �e− 1

)
. (2.38)

Since M is 2 × 2, its eigenvalues are

m = trM ± √
trM2 − 4 det M

2
,

and so hyperbolicity is equivalent to det M 	= 0 and det M < 0 or trM 	= 0.
Computing, we have

det M = (v/µν) ((� + 2)v − (� + 1)(1 + �e−)) , (2.39)

so that det M ≷ 0 is equivalent (for � > 0; hence v � v∗ > 0) to

(� + 2)v − (� + 1)(1 + �e−) ≷ 0. (2.40)

At v = v− = 1, this reduces to e− 	= 1
�(�+1)

, or, using (2.34), to

v+
(� + 2)(1 − v+)

2
> 0,

except in the characteristic case v+ = 1, while

trM = µ−1(1 − �e− + (ν/µ)−1) � µ−1
(

1 − � + 2

2(� + 1)
+ (ν/µ)−1

)
� ν > 0.

At v = v+, (2.40) reduces, using (2.34), to

det M = (v+/µν)

(
v+

(� + 2)(v+ − 1)

2

)
< 0,

except in the characteristic case v+ = 1. Thus, for v+ bounded from zero, hyper-
bolicity fails at x = ±∞ only in the characteristic case v− = v+ = 1.

Next, let us recall the existence proof of [21]. The argument proceeds from
the observation that isoclines v′ = 0 and e′ = 0—obtained by setting the right-
hand sides of (2.24) and (2.25) to zero—bound a convex lens-shaped region whose
vertices are the unique equilibria U±. This region is invariant under the forward flow
of (2.24)–(2.25), and the unstable manifold of U− enters it. (Recall that det M < 0
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at −∞; hence there is a one-dimensional unstable manifold.) It follows that the
unstable manifold must approach attractor U+ as x → +∞, determining the unique
connecting orbit describing the profile.

By the above-demonstrated hyperbolicity, this argument extends also to the case
v+ = v∗ (e− = 0), yielding at once existence and uniform boundedness of profiles
across the whole parameter range (recall that (v, e)± are uniformly bounded, by the
Rankine–Hugoniot analysis of the previous section), in particular for the limiting
profile equations at v+ = v∗ of

v′ = 1

µ
[v(v − 1) + �e] , (2.41)

e′ = v

ν

[
− (v − 1)2

2
+ e

]
. (2.42)

Collecting facts, we have the following key result.

Lemma 2.1. For � bounded and bounded away from the nonphysical limit � = 0,
µ, ν bounded and bounded from zero, and v+ bounded away from the characteristic
limit v− = 1, profiles Û = (v̂, û, ê)T of the rescaled equations (2.24)–(2.25) exist
for all 1 � v+ � v∗, decaying exponentially to their end states U± as x → ±∞,
uniformly in �, v+, µ, ν.

Proof. Existence, boundedness, and exponential decay of individual profiles fol-
low from the discussion above. Uniform bounds follow by smooth dependence on
parameters together with compactness of the parameter range. 
�

3. Evans function formulation

We continue to specialize to the ideal gas case, and, from now on, without loss
of generality, we set µ = 1.

3.1. Linearized integrated eigenvalue equations

Defining integrated variables

ṽ :=
∫ x

−∞
v dy, ũ :=

∫ x

−∞
u dy, Ẽ :=

∫ x

−∞
E dy,

we note that the rescaled equations (2.13)–(2.15) can be written in terms of the
integrated variables in the form

ṽt + ṽx − ũx = 0,

ũt + ũx + �(Ẽx − ũ2
x

2 )

ṽx
= ũxx

ṽx
,

Ẽt + Ẽx + �ũx (Ẽx − ũ2
x

2 )

ṽx
= ũx ũxx

ṽx
+ ν(Ẽx − ũ2

x
2 )x

ṽx
. (3.1)
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The integrated viscous profile,

˜̂v :=
∫ x

−∞
v̂ dy, ˜̂u :=

∫ x

−∞
û dy,

˜̂E :=
∫ x

−∞
Ê dy,

is a stationary solution of (3.1). Then we write

ṽ = ˜̂v + v, ũ = ˜̂u + u, Ẽ = ˜̂E + E,

and we linearize (3.1) about the integrated profile. By an abuse of notation, we
denote the perturbation by v, u, and E . Note also that the integrated profile always
appears under an x-derivative; this explains the appearance of “hats” and not “tilde-
hats” in the expression below. Finally, we use the relationship Ê = ê− û2

2 to simplify
some of the expressions, and we obtain the linearized integrated equations

vt + vx − ux = 0,

ut + ux + �(Ex − ûux )

v̂
− �ê

v̂2 vx = uxx

v̂
− ûx

v̂2 vx ,

Et + Ex + �û(Ex − ûux )

v̂
+ �ê

v̂
ux − �êû

v̂2 vx = ûuxx

v̂
+ ûx

v̂
ux − ûûx

v̂2 vx

+ ν(Ex − ûux )x

v̂
− νêx

v̂2 vx .

(3.2)

Defining ε := E − ûu, subtracting û times the second equation from the third, and
rearranging, we obtain, finally, the linearized integrated eigenvalue equations:

λv + v′ − u′ = 0,

λu + u′ + �

v̂
ε′ + �ûx

v̂
u +

[
−�ê

v̂2 + ûx

v̂2

]
v′ = u′′

v̂
,

λε + ε′ +
[

ûx − νûxx

v̂

]
u +

[
�ê

v̂
− (ν + 1)

ûx

v̂

]
u′ +

[
νêx

v̂2

]
v′ = ν

v̂
ε′′. (3.3)

3.2. Expression as a first-order system

Following [3], we may express (3.3) concisely as a first-order system

W ′ = A(x, λ)W, (3.4)

A(x, λ) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
λν−1v̂ ν−1v̂ ν−1v̂ûx − ûxx λg(Û ) g(Û ) − h(Û )

0 0 0 λ 1
0 0 0 0 1
0 � λv̂ + �ûx λv̂ f (Û ) − λ

⎞
⎟⎟⎟⎟⎠

, (3.5)

W = (ε, ε′, u, v, v′)T , ′ = d

dx
, (3.6)

where, using ûx = v̂x and (2.24) with µ = 1,
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g(Û ) := ν−1(�ê − (ν + 1)ûx )

= ν−1�ê − −ν + 1

ν
v̂x

= ν−1�ê − ν + 1

ν

(
v̂(v̂ − 1) + �(ê − v̂e−)

)
, (3.7)

f (Û ) := ûx − �ê

v̂
+ v̂ = 2v̂ − 1 − �e−, (3.8)

h(Û ) := − êx

v̂
= −ν−1

(
− (v̂ − 1)2

2
+ (ê − e−) + (v̂ − 1)�e−

)
. (3.9)

Remark 3.1. Remarkably, similarly as for the profile equations, the entries of A
are polynomial in (v̂, û, ê). Thus, both profile and linearized eigenvalue equations
are perfectly well behaved for any compact subset of � > 0.

3.3. Consistent splitting

Denote by A±(λ) := limx→±∞ A(x, λ) the limiting coefficient matrices at
x = ±∞. (These limits exist by exponential convergence of profiles Û , Lemma
2.1.) Denote by S± and U± the stable and unstable subspaces of A±.

Definition 1. Following [1], we say that an n × n system of the form (3.4) exhibits
consistent splitting on a given λ-domain if A± are hyperbolic, with dim S+ and
dim U− constant and summing to the dimension of the full space, n (in this case
n = 5).

By analytic dependence of A on λ and standard matrix perturbation theory, S+
and U− are analytic on any domain for which consistent splitting holds.

Lemma 3.1. For all � > 0, 1 � v+ > v∗, (3.4)–(3.5) exhibit consistent splitting
on {�λ � 0}\{0}, with dim S+ = 3 and dim U− = 2. Moreover, subspaces S+ and
U−, along with their associated spectral projections, extend analytically in λ and
continuously in �, ν, v−, to {�λ � 0} for � > 0, ν > 0, and 1 > v+ � v∗.

Proof. Consistent splitting and analytic extension to λ = 0 follow by the general
results of [35], except at the strong-shock limit v+ = v∗, where

A∗−(λ) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
λν−1 ν−1 0 0 0

0 0 0 λ 1
0 0 0 0 1
0 � λ λ 1 − λ

⎞
⎟⎟⎟⎟⎠

(3.10)

and

A∗+(λ) =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
λν−1v∗ ν−1v∗ 0 λg(U+) g(U+)

0 0 0 λ 1
0 0 0 0 1
0 � λv∗ λv∗ f (U+) − λ

⎞
⎟⎟⎟⎟⎠

, (3.11)

where g(U+) = (1−v∗)
ν

(v∗ − (ν − 1)) and f (U+) = �−2
�+2 .
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The matrix A∗− is lower block-triangular, with diagonal blocks

(
0 1

λν−1 ν−1

)
,

⎛
⎝

0 λ 1
0 0 1
λ λ 1 − λ

⎞
⎠

corresponding, respectively, to the scalar convection-diffusion equation

εt + εx = νεxx

and the isentropic case treated in [27], The first has eigenvalues µ = 1±√
1+4λ
2 , so

it satisfies consistent splitting on {�λ � 0}\{0}, with analytic continuation (since
eigenvalues remain separated) to �λ � 0. The second, as observed in [27], has

eigenvalues µ = −λ, 1±√
1+4λ
2 ; hence it likewise satisfies consistent splitting on

{�λ � 0}\{0} and (since the single unstable eigenvalue remains separated from
the two stable eigenvalues) continues analytically to �λ � 0. Indeed, the unstable
manifold has dimension two for all �λ � 0; hence it is analytic on that domain.
This verifies the proposition at x = −∞ by direct calculation.

At x = +∞, the computation is more difficult. Here, we refer instead to the
abstract results of [35], which asserts that hyperbolic–parabolic systems of the type
treated here, including the limiting case, at least for v∗ 	= 0, exhibit consistent
splitting on {�λ � 0}\{0}, with analytic extension to �λ � 0, so long as the
shock is noncharacteristic, that is, the flux Jacobian associated with the first-order
part of the equations have nonvanishing determinants at x = ±∞. These may be
computed in any coordinates, in particular (v, u, ε). Neglecting terms originating
from diffusion, that is, including only first-order terms from the left-hand side, we
obtain from (3.3) the flux Jacobian

⎛
⎝

1 −1 0
−�e/v2 1 �/v

0 �e/v 1

⎞
⎠,

which has determinant 	 = 1 − �2e/v2 − �e/v2, giving for v+ = v∗ (e− = 0)
that 	−∞ = 1 > 0 and, calculating at v+ = v∗ that

�e+/v2∗ = 2, 	+∞ = −1 − 2� < 0.

Thus, we may conclude by the general results of [35] that consistent splitting holds
at both x = ±∞ on {�λ � 0}\{0} for 1 � v+ � v∗, with analytic extension to
�λ � 0. 
�
Remark 3.2. We note that the results of [35] do not apply at x = −∞, v+ = v∗,
where e− = 0 leaves the physical domain. Specifically, at this value the genuine
coupling condition of Kawashima [47]; hence the dissipativity condition of [35]
fails, and so we cannot conclude consistent splitting; indeed, the eigenvalue µ ≡ λ

(corresponding to the decoupled hyperbolic mode) is purely imaginary for any
purely imaginary λ.



Jeffrey Humpherys, Gregory Lyng & Kevin Zumbrun

3.4. Construction of the Evans function

We now construct the Evans function associated with (3.4)–(3.5), following the
approach of [35,42].

Lemma 3.2. There exist bases V − = (V −
1 , V −

2 )(λ), V + = (V +
3 , V +

4 , V +
5 )(λ)

of U−(λ) and S+(λ), extending analytically in λ and continuously in �, ν, v− to
{�λ � 0} for � > 0, ν > 0, and 1 > v+ � v∗, determined by Kato’s ODE

V ′ = (P P ′ − P ′ P)V, (3.12)

where P denotes the spectral projection onto S+, U−, respectively, and ′ denotes
d/dλ.

Proof. This follows from Lemma 3.1 by a standard result of Kato [32], valid on
any simply connected set in λ on which P remains analytic. 
�
Lemma 3.3. There exist bases

W − = (W −
1 , W −

2 )(λ), W + = (W +
3 , W +

4 , W +
5 )(λ)

of the unstable manifold at −∞ and the stable manifold at x = +∞ of (3.4)–(3.5),
asymptotic to eA−x V − and eA+x V +, respectively, as x → ∓∞, and extending
analytically in λ and continuously in �, ν, v+ to {�λ � 0} for � > 0, ν > 0, and
1 > v+ � v∗.

Proof. This follows, using the conjugation lemma of [38], by uniform exponential
convergence of A to A± as x → ±∞, Lemma 2.1. 
�
Definition 2. The Evans function associated with (3.4)–(3.5) is defined as

D(λ) := det(W +, W −)|x=0. (3.13)

Proposition 3.1. The Evans function D(·) is analytic inλand continuous in�, ν, v+
on �λ � 0 and � > 0, ν > 0, and 1 > v+ � v∗. Moreover, on {�λ � 0}\{0},
its zeros correspond in location and multiplicity with eigenvalues of the integrated
linearized operator L, or, equivalently with solutions of (3.3) decaying at x = ±∞.

Proof. The first statement follows by Lemma 3.3, the second by a standard result
of Gardner and Jones [17,18], valid on the region of consistent splitting. 
�
Remark 3.3. Proposition 3.1 includes in passing the key information that the Evans
function converges in the strong-shock limit v+ → v∗ to the Evans function for
the limiting system at v+ = v∗, uniformly on compact subsets of {�λ � 0}, as
illustrated numerically in Fig. 6.

Remark 3.4. The specification in (3.12) of initializing bases at infinity is optimal
in that it minimizes “action” in a certain sense; see [29] for further discussion.
In particular, for any constant-coefficient system, the Evans function induced by
Kato bases (3.12) is identically constant in λ. For, in this case, bases W + and
W − are given at x = 0 by the values V ± prescribed in (3.12), and both evolve
according to the same ODE; hence W = (W −, W +)x=0 satisfies W ′ = [P, P ′]W
and D(λ) := det W ≡ constant by Abel’s Theorem and the fact that tr[P, P ′] = 0,
where [P, P ′] := P P ′ − P ′ P .
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Remark 3.5. More generally, det(V −, V +) ≡ constant in the “traveling pulse”
case U+ = U−, by the argument of Remark 3.4, whence the Evans function
constructed here may be seen to agree with the “natural” Evans function (inde-
pendent of the choice of V ±)

E(λ) := det(W +, W −)|x=0

det(V +, V −)
= W̃ + · W −|x=0

Ṽ + · V − (3.14)

defined in [41] for that case. The latter may in turn be seen to agree with a
(2-modified) characteristic Fredholm determinant of the associated linearized ope-
rator L about the wave [20], formally equivalent to

det2(I + (L0 − λ)−1(L − L0)) ∼ det2(L − λ)

det2(L0 − λ)
,

where L0 denotes the (constant-coefficient) linearized operator about the back-
ground state U±. Our construction by Kato’s ODE thus gives a natural extension to
the traveling-front case of the canonical constructions of [20,41] in the traveling-
pulse case, neither of which generalizes in obvious fashion to the traveling-front
setting (the difficulty in both cases coming from the fact that det(V +, V−) may
vanish).

4. High-frequency bounds

We now carry out the main technical work of the paper, establishing the follo-
wing uniform bounds on the size of unstable eigenvalues.

Proposition 4.1. Nonstable eigenvalues λ of (3.3), that is, eigenvalues with non-
negative real part, are confined for γ > 1, v∗ < v+ � 1 to a finite region |λ| � �,
for any

� � 2 max{1, ν} max
x

(
|F∗−−| + |F∗++| + 2

√|F∗−+||F∗+−|
v̂1/2 (x,�)

)2

, (4.1)

where

|F∗
kl |(x,�) :=

4∑
i=0

|F−i/2,kl |
|�|i/2 (x), (4.2)

k, l = +,−, F j,kl are as defined in (4.22) below, and | · | is the matrix operator
norm with respect to any specified norm on C

5.

Before establishing Proposition 4.1, we give a general discussion indicating the
ideas behind the proof. For v+ > v∗, such high-frequency bounds have already
been established by asymptotic ODE estimates in [35]. For v+ = v∗, the problem
leaves the class studied in [35] (specifically, the dissipativity condition is neutrally
violated as discussed in Remark 3.2); hence, it requires further discussion.
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However, a brief examination reveals that the argument of [35] applies in this
case almost unchanged. For, recall that the method of [35] to obtain high-frequency
bounds was to decompose the flow of the first-order eigenvalue equation for high fre-
quencies into parabolic growth and decay modes of equal dimensions r = dim(u, e)
with growth rates �µ ∼ ±|λ|1/2, and hyperbolic modes of dimension n − r , in
the present case dim v = 1, with growth rate ∼ ±(�λ + 1) up to an exponentially
decaying error term ∼ e−θ |x |, the delicate point being to separate decaying from
growing hyperbolic modes.

In the present, degenerate case, the hyperbolic rates are only∼ �λplus decaying
error term, and so the final, delicate part of the argument in [35] does not apply.
However, since there is only a single hyperbolic mode, this part of the argument is
not needed. Specifically, the |λ|1/2/C spectral gap between parabolic and hyper-
bolic modes allow us for high frequencies to decompose the flow of the eigenvalue
equation into the direct sum of growing parabolic modes blowing up exponentially
at x = +∞, decaying parabolic modes blowing up exponentially at −∞, and a
single hyperbolic mode that blows up exponentially at −∞ for v+ > v∗ and, though
it does not blow up exponentially for v+ = v∗, is in any case always transverse to
the unstable manifold at x = −∞.

To put things another way, the unstable manifold at x = −∞ consists for |λ|
sufficiently large precisely of growing parabolic modes, which blow up at x = +∞.
Thus, there exist no zeros of the Evans function, since these correspond to solutions
belonging to both the unstable manifold at −∞ and the stable (hence decaying)
manifold at +∞. This shows the existence of uniform high-frequency bounds; it
remains to establish quantitative bounds by keeping track of constants throughout
the argument.

Remark 4.1. A review of the above shows that the same argument applies whene-
ver hyperbolic modes are uniformly decaying or growing, that is, in the situation
identified in [22,36,54] that all hyperbolic characteristic speeds have a common
sign. Likewise, the multidimensional case may be treated by essentially the same
argument, following the generalization given in [22].

Proof of Proposition 4.1. We carry out the argument in two steps.
1. Preparation. Recasting (3.4), (3.5) in the standard coordinates of [35], as

Z ′ = B(x, λ)Z , Z = (v, u, ε, u′, ε′)T , (4.3)

B(x, λ) =

⎛
⎜⎜⎜⎜⎝

−λ 0 0 1 0
0 0 0 1 0
0 0 0 0 1

λ( f (Û ) − v̂) λv̂ + �ûx 0 f (Û ) �

λh(Û ) ν−1v̂ûx − ûxx λν−1v̂ g(Û ) − h(Û ) ν−1v̂

⎞
⎟⎟⎟⎟⎠

, (4.4)

and we decompose B as B = λB1 + B0 with

B1(x) =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

f (Û ) − v̂ v̂ 0 0 0
h(Û ) 0 ν−1v̂ 0 0

⎞
⎟⎟⎟⎟⎠

, (4.5)
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and

B0(x) =

⎛
⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 �ûx 0 f (Û ) �

0 ν−1v̂ûx − ûxx 0 g(Û ) − h(Û ) ν−1v̂

⎞
⎟⎟⎟⎟⎠

. (4.6)

Noting that B1 is lower block-triangular, with (1 × 1) upper diagonal block −1
strictly negative, and (4 × 4) lower diagonal block

α :=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
v̂ 0 0 0
0 ν−1v̂ 0 0

⎞
⎟⎟⎠,

having all zero eigenvalues, we block-diagonalize by the lower block-diagonal
transformation Z := T X ,

T :=
(

1 0
θ I4

)
, T −1 :=

(
1 0

−θ I4

)
,

θ := −(α + I4)
−1

⎛
⎜⎜⎝

0
0

f (Û ) − v̂

h(Û )

⎞
⎟⎟⎠,

where, since α2 = 0, (I + α)−1 = I − α; hence

θ = −

⎛
⎜⎜⎝

0
0

f (Û ) − v̂

h(Û )

⎞
⎟⎟⎠ + α

⎛
⎜⎜⎝

0
0

f (Û ) − v̂

h(Û )

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
0

− f (Û ) + v̂

−h(Û )

⎞
⎟⎟⎠,

and

T −1T ′ =
(

0 0
θ ′ 0

)
=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−v̂x 0 0 0 0
j (Û ) 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

j (Û ) := ν−1
(
(�e− − (v̂ − 1))v̂x + êx

)
, to obtain X ′ = CX ,

C = T −1 BT − T −1T ′ = λC1 + C0,

where

C1(x, λ) =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 v̂ 0 0 0
0 0 ν−1v̂ 0 0

⎞
⎟⎟⎟⎟⎠

, (4.7)
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is in a variant of block Jordan form and

C0(x, λ) =

⎛
⎜⎜⎜⎜⎜⎝

v̂ − f (Û ) 0 0 1 0
v̂ − f (Û ) 0 0 1 0
−h(Û ) 0 0 0 1
k(Û ) �ûx 0 2 f (Û ) − v̂ �

l(Û ) ν−1v̂ûx − ûxx 0 g(Û ) ν−1v̂

⎞
⎟⎟⎟⎟⎟⎠

, (4.8)

where

k(Û ) := (2 f (Û ) − v̂)(v̂ − f (Û )) − �h(Û ) + v̂x ,

l(Û ) := g(Û )(v̂ − f (Û )) − ν−1v̂h(Û ) − j (Û ).
(4.9)

Making the further transformation X = QY ,

Q :=
(

1 β

0 I4

)
, Q−1 :=

(
1 −β

0 I4

)
,

β := λ−1(0, 0, 1, 0)(I4 + α)−1

= λ−1(0, 0, 1, 0)(I4 − α)

= λ−1(−v̂, 0, 1, 0),

Q−1 Q′ =
(

0 β ′
0 0

)
= λ−1

⎛
⎜⎜⎜⎜⎝

0 −v̂x 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

we obtain Y ′ = DY ,

D = Q−1C Q − Q−1 Q′

= λD1 + D0 + λ−1 D−1 + λ−2 D−2,

where D1 = C1,

D0(x, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v̂ − f (Û ) 0 0 0 0

v̂ − f (Û ) 0 0 1 0

−h(Û ) 0 0 0 1

k(Û ) �ûx 0 2 f (Û ) − v̂ �

l(Û ) ν−1v̂ûx − ûxx 0 g(Û ) ν−1v̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.10)

D−1(x, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m(Û ) −v̂2 + f (Û )v̂ − �ûx + v̂x 0 3(v̂ − f (Û )) −�

0 −v̂(v̂ − f (Û ) 0 v̂ − f (Û ) 0

0 −v̂h(Û ) 0 −h(Û ) 0

0 −v̂k(Û ) 0 k(Û ) 0

0 −v̂l(Û ) 0 l(Û ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.11)
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and

D−2(x, λ) =

⎛
⎜⎜⎜⎜⎝

0 −v̂m(Û ) 0 m(Û ) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, (4.12)

where

m(Û ) := v̂(v̂ − f (Û )) − k(Û ).

Making the “balancing” transformation Y = V Z , V =
(

I3 0
0 λ1/2 I2

)
, we then

obtain Z ′ = EZ , E = V −1 DV , where

E =

⎛
⎜⎜⎜⎜⎝

−λ 0 0 0 0
0 0 0 λ1/2 0
0 0 0 0 λ1/2

0 λ1/2v̂ 0 0 0
0 0 λ1/2ν−1v̂ 0 0

⎞
⎟⎟⎟⎟⎠

+ , (4.13)

 = 0 + λ−1/2−1/2 + λ−1−1 + λ−3/2−3/2 + λ−2−2,

where

0(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v̂ − f (Û ) 0 0 0 0

v̂ − f (Û ) 0 0 0 0

−h(Û ) 0 0 0 0

0 0 0 2 f (Û ) − v̂ �

0 0 0 g(Û ) ν−1v̂

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.14)

−1/2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 3(v̂ − f (Û )) −�

0 0 0 v̂ − f (Û ) 0

0 0 0 −h(Û ) 0

k(Û ) �ûx 0 0 0

l(Û ) ν−1v̂ûx − ûxx 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.15)

−1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m(Û ) −v̂(v̂ − f (Û )) + v̂x − �ûx 0 0 0

0 −v̂(v̂ − f (Û ) 0 0 0

0 v̂h(Û ) 0 0 0

0 0 0 k(Û ) 0

0 0 0 l(Û ) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.16)
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−3/2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 m(Û ) 0

0 0 0 0 0

0 0 0 0 0

0 −v̂k(Û ) 0 0 0

0 −v̂l(Û ) 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.17)

−2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −v̂m(Û ) 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4.18)

Finally, setting Z = S̃X , with

S̃ :=
(

1 0
0 s̃

)
, s̃ :=

(
I I

−A A

)
, s̃−1 := 1

2

(
I −A−1

I A−1

)
,

A :=
(√

v̂ 0
0

√
ν−1v̂

)
, A−1 :=

(
1/

√
v̂ 0

0 1/
√

ν−1v̂

)
,

S̃−1 S̃x =
(

0 0
0 s̃−1s̃x

)
s̃−1s̃x = (v̂x/4v̂)

(
I −I

−I I

)
,

we obtain

X ′ = (F + F)X, (4.19)

where

F = S̃−1 E S̃ =
(

M− 0
0 M+

)
(4.20)

with

M+ :=
(

λ1/2v̂1/2 0
0 λ1/2(v̂/ν)1/2

)
,

M− :=
⎛
⎝

−λ 0 0
0 −λ1/2v̂1/2 0
0 0 −λ1/2(v̂/ν)1/2

⎞
⎠, (4.21)

and

F = S̃−1S̃ − S̃−1 S̃x

= F0 + λ−1/2F−1/2 + λ−1F−1 + λ−3/2F−3/2 + λ−2F−2,
(4.22)
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where

F0(x) =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

v̂ − f (Û ) 0 0 0 0
v̂− f (Û )

2
2 f (Û )−v̂

2 − v̂x
4v̂

√
ν−1�
2 − 2 f (Û )−v̂

2 + v̂x
4v̂

−√
1/ν�
2

−h(Û )
2

g(Û )

2
√

1/ν

ν−1v̂
2 − v̂x

4 − g(Û )

2
√

1/ν
− ν−1v̂

2 + v̂x
4

v̂− f (Û )
2 − 2 f (Û )−v̂

2 + v̂x
4v̂

−
√

1/ν�
2

2 f (Û )−v̂
2 − v̂x

4v̂

√
1/ν�
2

−h(Û )
2 − g(Û )

2
√

1/ν
− ν−1v̂

2 + v̂x
4

g(Û )

2
√

1/ν

ν−1v̂
2 − v̂x

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.23)

F−1/2(x) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −3
√

v̂(v̂ − f (Û )) �

√
v̂
ν

3
√

v̂(v̂ − f (Û )) −�

√
v̂
ν

−k(Û )

2
√

v̂

−�ûx

2
√

v̂
−

√
v̂

2 (v̂ − f (Û )) 0 −�ûx

2
√

v̂
+

√
v̂

2 (v̂ − f (Û )) 0
−l(Û )

2
√

v̂/ν
− n(Û )

2
√

ν−1v̂
+ h(Û )

√
v̂

2 0 − n(Û )

2
√

ν−1v̂
− h(Û )

√
v̂

2 0

k(Û )

2
√

v̂

�ûx

2
√

v̂
−

√
v̂

2 (v̂ − f (Û )) 0 �ûx

2
√

v̂
+

√
v̂

2 (v̂ − f (Û )) 0
l(Û )

2
√

v̂/ν

n(Û )

2
√

v̂/ν
+ h(Û )

√
v̂

2 0 n(Û )

2
√

v̂/ν
− h(Û )

√
v̂

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.24)

n(Û ) := ν−1v̂ûx − ûxx ,

F−1(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

m(Û ) q(Û ) 0 q(Û ) 0

0 −v̂(v̂− f (Û ))+k(Û )
2 0 −v̂(v̂− f (Û ))−k(Û )

2 0

0 v̂h(Û )
2 + l(Û )

2
√

ν−1
0 v̂h(Û )

2 − l(Û )

2
√

ν−1
0

0 −v̂(v̂− f (Û ))−k(Û )
2 0 −v̂(v̂− f (Û ))+k(Û )

2 0

0 v̂h(Û )
2 − l(Û )

2
√

ν−1
0 v̂h(Û )

2 + l(Û )

2
√

ν−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.25)

q(Û ) := −v̂(v̂ − f (Û )) − �ûx + v̂x , (4.26)

F−3/2(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −v̂1/2m(Û ) 0 v̂1/2m(Û ) 0

0 v̂1/2k(Û )
2 0 v̂1/2k(Û )

2 0

0 v̂1/2l(Û )

2
√

ν−1
0 v̂1/2l(Û )

2
√

ν−1
0

0 − v̂1/2k(Û )
2 0 −v̂1/2k(Û )

2 0

0 − v̂1/2l(Û )

2
√

ν−1
0 − v̂1/2l(Û )

2
√

ν−1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.27)

F−2(x) =

⎛
⎜⎜⎜⎜⎝

0 −v̂m(Û ) 0 −v̂m(Û ) 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

. (4.28)
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2. Tracking. Denoting X− = (X1, X2, X3)
T , X+ = (X4, X5)

T , and

F =
(F−− F−+

F+− F++

)
,

we obtain from (4.19)–(4.20)

|X−|′ � |F−−||X−| + |F−+||X+|,
|X+|′ � min{1, ν−1/2}v̂1/2�λ1/2|X+| − |F+−||X−| − |F++||X+|, (4.29)

from which, defining ζ := |X−|/|X+|, we obtain by a straightforward computation
the Ricatti equation

ζ ′ �
(
− min{1, ν−1/2}v̂1/2�λ1/2 + |F−−| + |F++|

)
ζ + |F−+| + |F+−|ζ 2.

(4.30)

Denote by

ζ± := min{1, ν−1/2}v̂1/2�λ1/2 − |F−−| − |F++|
2|F+−|

±
√(

min{1, ν−1/2}v̂1/2�λ1/2 − |F−−| − |F++|
2|F+−|

)2

− |F−+|
|F+−|

(4.31)

the roots of(
− min{1, ν−1/2}v̂1/2�λ1/2 + |F−−| + |F++|

)
ζ + |F−+| + |F+−|ζ 2 = 0.

(4.32)

Assuming for all x the condition

max{1, ν1/2} |F−−| + |F++| + 2
√|F−+||F+−|

v̂1/2 < �λ1/2, (4.33)

ζ± are positive real and distinct, whence, consulting (4.30), we see that ζ ′ < 0 on
the interval ζ− < ζ < ζ+.

It follows that �− := {ζ � ζ−} is an invariant region under the forward flow of
(4.19). Moreover, this region is exponentially attracting for ζ < ζ+. A symmetric
argument yields that �+ := {ζ � ζ+} is invariant under the backward flow of
(4.19), and exponentially attracting for ζ > ζ−. Specializing these observations to
the constant-coefficient limiting systems at x = −∞ and x = +∞, we find that the
invariant subspaces of the limiting coefficient matrices from which the Evans func-
tion is constructed must lie in �− and �+, respectively. By forward (respectively,
backward) invariance of �− (respectively, �+), under the full, variable-coefficient
flow, we thus find that the manifold Span W − of solutions initiated at x = −∞
in the construction of the Evans function lies in �− for all x , while the manifold
Span W + of solutions initiated at x = +∞ lies in �+ for all x .

Since �− and �+ are distinct, we may conclude that under condition (4.33),
Span W + and Span W − are transverse and the Evans function does not vanish. But

(4.1) implies (4.33), by �λ1/2 � |λ|1/2√
2

together with (4.22). 
�
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4.1. Universality and convergence in the high-frequency limit

The bounds obtained from (4.1) may in practice be rather conservative, as
illustrated by the following example.

Example 4.1. For the constant-coefficient scalar operator L := ∂2
x − a∂x , write

(L − λ)w = 0 as a first-order system W ′ = (A + )W , W = (w,w′/λ1/2)T ,

where A = λ1/2
(

0 1
1 0

)
,  =

(
0 0
0 a

)
. Block-diagonalizing A by W = RZ ,

R =
(

1 1
1 −1

)
, we obtain Z ′ = ( Ã + ̃)Z , where Ã = diag(1,−1), ̃ =

R−1R = (a/2)

(
1 −1

−1 1

)
. Applying the analog of (4.33) on �λ � 0, where

δ = 2�λ1/2 � |λ|1/2, we obtain nonexistence of eigenvalues for |λ|1/2 � 2|a|,
giving eigenbound |λ| � 4|a|2. By contrast, standard elliptic energy estimates give
|λ| � |a|2/4, which, by direct Fourier transform computation, is optimal. Com-
paring, we see that the tracking bound is of the correct order, O(|a|2), but with
coefficient 16 times larger than optimal.

This simple calculation may explain the ratio of roughly 10 between the noni-
sentropic bounds found by tracking in Section 5.2 and the isentropic energy bounds
found in [3,27]. The following result may be used to gauge at a practical level the
efficiency of the analytical tracking bounds by a (nonrigorous, but typically quite
sharp) numerical convergence study.

Proposition 4.2. On the nonstable half-plane �λ � 0,

lim|λ|→∞ D(λ)/eαλ1/2 = constant, (4.34)

α := (1 + ν−1/2)

(∫ 0

−∞
(v̂1/2(x) − v

1/2
− ) dx +

∫ +∞

0
(v̂1/2(x) − v

1/2
+ ) dx

)
real.

(4.35)

Proof. Reviewing the proof of Proposition 4.1, we find that the initial transforma-
tion T is asymptotically constant in λ as |λ| → ∞; thus, the projection onto the
“hyperbolic” mode corresponding to the 1–1 entry has the same property. It fol-
lows that the Kato ODE R′ = (P P ′ − P ′ P)R used to propagate initializing bases
at ±∞ (see Section 5), where P is the projection onto the stable (respectively,
unstable) subspace of A±, asymptotically decouples, yielding a constant (stable)
hyperbolic basis element, and two stable and two unstable “parabolic” basis ele-
ments coming from the 4 × 4 lower right-hand block of matrix E further below.
But, the latter decouples into what may be recognized as a pair of first-order sys-
tems corresponding to the scalar variable-coefficient heat equations ut = uxx and
ut = νuxx . Explicit evaluation of the Kato ODE, similar to but simpler than the
treatment of Burgers’ equation in [27], Appendix D, then yields that the Evans
function for would be asymptotically constant if A(x, λ) were identically equal to
A− for x � 0 and A+ for x � 0. See also Remark 3.4, which yields the same result
in much greater generality.
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Though A is not constant for x ≷ 0, the |λ|-asymptotic flow may be developed as
in [35] in an asymptotic series in λ−1/2 (respectively, λ−1) in parabolic (respectively,
hyperbolic) modes, to see that, up to an asymptotically constant factor (coming from

c(x) = O(1) terms in eigenvalues of various modes, through e
∫ 0
±∞(c(x)−c(±∞)) dx ),

the flow from y to x is given asymptotically by e±λ1/2
∫ x

y ν−1/2v̂(z)1/2 dz and

e±λ1/2
∫ x

y v̂(z)1/2 dz in parabolic modes and e−λ(y−x) in the hyperbolic mode (note:
constant rate, so no resulting correction), whence, correcting for variation in the
integrand from the constant-coefficient case, we obtain (4.34).

We omit the details, referring the reader to [12,27] and especially [35] for
similar but more difficult calculations. 
�
Remark 4.2. We see from (4.34) that the asymptotic behavior of contours is
independent of shock amplitude or model parameters, being determined up to
rescaling of λ by sgn α. This explains the “universal” quality of contour diagrams
arising here and in [12,27]. In practice, it is not necessary to compute α, since the
knowledge that limit (4.34) exists allows us to determine α, C by curve fitting of
log D(λ) = log C + αλ1/2 with respect to z := λ1/2, for |λ| � 1. When D is ini-
tialized in the standard way on the real axis, so that D̄(λ) = D(λ̄), C is necessarily
real.

Remark 4.3. Restricting the limiting Evans function D† := Ceαλ1/2
to the imagi-

nary axis, λ = iτ , τ ∈ R, we obtain

D†(iτ) = Ceα|τ |1/2/2(cos +i sin)(±α|τ |1/2),

predicting increasing winding about the origin as τ → ∞.

Since the limiting Evans function D† := Ceαλ1/2
is nonvanishing, we may

obtain practical high-frequency bounds by a convergence study on D → D†, requi-
ring, say, relative error � 0.2 to obtain a conservative but reasonably sharp radius.
Here, D† may be estimated numerically using profile data in the formulae of Pro-
position 4.2, by curve-fitting as described in Remark 4.2, or, more conventionally,
by numerical extrapolation in the course of the convergence study.

See, for example, the computation displayed in Figs. 1 and 2, comparing the
nonisentropic Evans function to its high-frequency limit Ceαλ1/2

for � = 2/3
and µ = ν = 1, at contour radii � = 25 and � = 10, respectively, where
C and α have been determined by first taking limits along the positive real axis.
Clearly, convergence in both cases has already occurred, whence radius � = 10 is
sufficient to bound unstable eigenvalues, similarly as in the isentropic case [3,27].
By comparison (see Section 5), tracking estimates give the much more conservative
bound � = 100.4. More extreme cases are depicted in Figs. 3 and 4 for µ = 1,
ν = 5, and gas constants � = 2/3 and � = 1/5, respectively. Note that convergence
has already occurred at radius � = 40, which is thus sufficient to bound unstable
eigenvalues; by contrast, the bounds obtained by tracking are � = 391.3 and
� = 1755.6, respectively.

These figures clearly indicate the universal behavior of the high-frequency limit.
This can be seen also in the contour plots of Fig. 6, comparing contours for the
same model and radius at different values of v+.
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Fig. 1. Universal behavior at high frequency: the images of the semicircle of radius 25 under
the Evans function and its universal approximant (4.36) (C , α, and β determined by curve
fitting), for a monatomic gas, � = 2/3, µ = ν = 1, in the worst case v+ = v∗ = 1/4.
Agreement is nearly exact on the image of the outer, circular arc and most of the imaginary
axis, with deviations for |λ| small
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Fig. 2. Universal behavior: the images of the semicircle of radius 10 under the Evans function
and its universal approximant (4.36), for � = 2/3, µ = ν = 1, v+ = v∗ = 1/4. (Tracking
radius = 100.4)
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Fig. 3. Universal behavior: the images of the semicircle of radius 40 under the Evans function
and its universal approximant (4.36), for � = 2/3, µ = 1, ν = 5, v+ = v∗ = 1/4. (Tracking
radius = 391.3)
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Fig. 4. Universal behavior: the images of the semicircle of radius 40 under the Evans function
and its universal approximant (4.36), for � = 1/5, µ = 1, ν = 5, v+ = v∗ = 1/11.
(Tracking radius = 1755.6.). Note that the two curves are essentially indistinguishable,
except that the universal approximate does not loop but instead cusps near the origin
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Remark 4.4. More generally, the argument of Proposition 4.34 yields

D(λ)/eαλ1/2+βλ = constant, (4.36)

α and β real constants, for all hyperbolic–parabolic parabolic system of the form
studied in [35,36], where β corrects for variation in the rates of growth (respecti-
vely, decay) in hyperbolic modes, which are given to first order by λ times their
convection rates [35]. That β = 0 in the present case is an accident of Lagrangian
coordinates, for which hyperbolic modes are convected (in the rest frame of the
shock) with the constant fluid velocity −s. In the more general case (4.36), asymp-
totic behavior of contours is determined (up to rescaling in λ) by sgn α together
with the additional parameter β/α2.

Remark 4.5. Figure 4 is particularly intriguing, showing convergence also for small
frequencies. This suggests the conjecture that D∗ might converge identically to D†

in the singular limit � → 0, ν/µ → ∞ for all frequencies, small as well as large.
This would be an interesting direction for further investigation. We remark that (i)
the limit of D∗ as � → 0 is accessible by our techniques, Remark 2.2, and (ii) the
limit ν/µ → ∞ should be accessible by standard singular perturbation techniques.

4.2. The small-amplitude limit

We mention in passing the following, related result noted in [27], regarding the
small-amplitude limit v+ → 1.

Proposition 4.3. The Evans function D converges uniformly as v+ → 1 on com-
pact subsets of {�λ � 0}\{0}, �, ν, µ > 0 to a constant C(�, ν, µ).

Proof. For |λ| sufficiently large, this follows by Proposition 4.2 together with the
fact [39] that profiles in the small-amplitude converge to an approximate Burgers
equation profile given by a symmetric tanh function, for which α vanishes to order
|1−v+| in (4.35). For |λ| bounded, this follows as described in [27] by the fact that
the Evans function also converges in the small-amplitude limit to the Evans function
associated with the scalar, Burgers equation, which by direct calculation is constant.
(The latter fact may be deduced, alternatively, by a simple scaling argument showing
that, for Burgers equation, the small-amplitude limit and large-amplitude limits are
equivalent.) 
�

The significance of Proposition 4.3 is that the exponential rate of decay of
profiles to their end states U± goes to zero in the characteristic limit v+ → 1,
as seen in the proof of Lemma 2.1. Thus, we cannot immediately conclude as in
the “regular” large-amplitude limit v+ → v∗ even that a limit exists as v+ → 1.
Moreover, a second consequence is that the computational domain [−L−, L+]
on which we carry out numerical evaluation of the Evans function enlarges to
|L±| → ∞ as v+ → 1, since this must be taken roughly proportional to the
inverse of the exponential rate for numerical accuracy; see Section 5.3.4. Thus, the
boundaryv+ = 1 is not directly accessible by numerical Evans-function techniques,
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but requires a singular-perturbation analysis, either carried out numerically or else
analytically as above. Alternatively, small-amplitude instability may be ruled out
by energy estimates as described in the introduction; see [3,31,37].

Remark 4.6. Similarly as described just below Remark 4.3 for the high-frequency
limit, the small-amplitude limit may be used to obtain a sharp but nonrigorous2

lower bound on the amplitude of unstable shocks by a convergence study requiring
relative error < 0.2 between Evans values and their constant limit; or, still sharper,
and more conveniently estimated, to require relative error < 0.2 between the Evans
function and its estimated high-frequency approximant. Convergence in the small-
and large-amplitude limits v+ → 1 and v+ → v∗ is illustrated numerically in
Fig. 6 for � = 2/3 and µ = ν = 1. For the same parameters, a blowup of the
image for the minimum amplitude v+ = 0.7, or Mach number M ≈ 1.25, is given
in Fig. 7, showing convergence to the high-frequency approximant to relative error
∼ 0.1 but convergence to the constant small-amplitude limit only to relative error
∼ 0.5.

5. Numerical protocol

We now describe the numerical algorithm, based on approximate computation
of the Evans function, by which we shall locate any unstable eigenvalues, if they
exist, in our system, over the compact parameter range under investigation. Speci-
fically, using analyticity of the Evans function in �λ � 0, we numerically compute
the winding number around a large semicircle B(0,�) ∩ {�λ � 0} enclosing all
possible unstable roots, obtaining a count of the number of unstable eigenvalues
within, and thus of the total number of unstable eigenvalues. This approach was first
used by Evans and Feroe [14] and has been advanced further in various directions
in, for example, [2,5–7,31,40,41].

5.1. Approximation of the profile

Following [3,27], we compute the traveling wave profile using MatLab’s
bvp4c routine, which is an adaptive Lobatto quadrature scheme. These calcu-
lations are performed on a finite computational domain [−L−, L+] with projective
boundary conditions M±(U −U±) = 0. The values of approximate plus and minus
spatial infinity L± are determined experimentally by the requirement that the abso-
lute error |U (±L±) − U±| be within a prescribed tolerance TOL = 10−3. This
requirement is not too demanding in practice; we make more stringent requirements
later in evaluating the Evans function.

5.2. Bounds on unstable eigenvalues

We next estimate numerically the coefficients |F∗
kl |(x,�) defined in (4.2), (4.1),

using the numerically generated profiles described above, generating an iterative

2 Recall that rigorous small-amplitude bounds are available by energy estimates [3,31].
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Table 1. Tracking bound �∗ versus �, ν (v+ = v∗)

� ν

0.2 0.5 1.0 2.0 5.0

0.2 398.6 388.8 385.3 733.8 1755.6
0.4 211.7 182.3 175.1 325.0 762.0
0.6 222.5 123.4 111.5 198.4 449.8
2/3 226.8 114.3 100.4 175.3 391.3
0.8 236.5 103.9 85.3 142.6 307.1
1.0 253.8 100.8 73.7 113.8 229.2
1.2 274.3 106.6 69.7 98.7 183.1
1.4 300.8 117.5 70.5 91.6 154.9
1.6 347.4 131.8 74.5 89.8 138.0
1.8 397.3 148.7 80.8 91.8 128.6
2.0 450.3 167.5 88.7 96.7 124.7

sequence � j+1 := T (� j ),

T (�) := 2 max{1, ν} max
x

(
|F∗−−| + |F∗++| + 2

√|F∗−+||F∗+−|
v̂1/2 (x,�)

)2

.

This is easily seen to converge, with odd terms monotone increasing and even
terms monotone decreasing or the reverse, to a fixed point �∗ = T (�∗), which,
by Proposition 4.1, gives a bound |λ| � �∗ on the maximum modulus of unstable
eigenvalues �λ � 0. Computations for a range of typical parameter values are
displayed in Table 1, for the worst case v+ = v∗. Note the degradation of bounds
for ν � µ or ν � µ, a consequence of multiple scales (stiffness).

Remark 5.1. The poor rigorous tracking estimates obtained for ν � µ or ν � µ

could in principle be improved by a refined tracking estimate separating further
the parabolic modes: that is, taking account of the presence of multiple parabolic
scales; see [35,42] for methodology. Ultimately, this should be treated by singular
perturbation techniques as in [1], separating out also fast/slow behavior of the
background profile.

5.2.1. High-frequency convergence study Alternatively, we could obtain more
realistic, but nonrigorous unstable eigenvalue bounds by a convergence study as
|λ| → ∞, as described in Section 4.1. A convenient algorithm is to estimate
coefficients C , α of the high-frequency approximant D(λ) ∼ Ceα

√
λ by linear fit

of log D ∼ log C + α
√

λ as λ goes to real positive infinity, then approximate by
binary search the value �∗ at which relative error between D(λ) and Ceα

√
λ is

less than TOL1 = 10−1 on the positive semicircle |λ| = �∗, �λ � 0, indicating
convergence to this tolerance, hence nonvanishing of D, for |λ| � �∗, �λ � 0.
The resulting bounds are much less conservative than those obtained by rigorous
tracking estimates of Section 5.2; see for example the discussion following Remark
4.3. We do not pursue this here, as our main interest is in rigorous bounds. However,
the observation seems quite important for practical numerical testing, as typical
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differences in radius are an order of magnitude or more, and the size of the radius
appears to be the main limiting factor in computational efficiency.

5.3. Approximation of the Evans function

We compute the Evans functions for comparison by two rather different tech-
niques, both of which have been demonstrated to give good numerical results.

5.3.1. The exterior-product method Following [5–8], we work with “lifted
equations”

W ′ = A(k)W, W := W1 ∧ · · · ∧ Wk,

evolving subspaces encoded as exterior products of basis elements W j , where

A(k)(W1 ∧ · · · ∧ Wk) := (AW1 ∧ · · · ∧ Wk) + · · · + (W1 ∧ · · · ∧ AWk),

(5.1)

defining W+ and W− as k+- and k−-products of bases {W +
j } and {W −

j } of the
subspaces of solutions of W ′ = AW decaying at +∞ and −∞; in the present case,
k+ = 3, k− = 2.

In this setting, the stable (respectively, unstable) manifold at +∞ (respectively,
−∞) corresponds to a single solution/vector, eliminating difficulties of “parasitic
modes”, etc.; see [3,5,8,31] for further discussion. We then compute the Evans
function as

D(λ) = W+ ∧ W−|x=0

or, alternatively, as D(λ) = W̃+ · W−|x=0, where W̃+ is an appropriate solution
of the adjoint equation W̃ ′ = −(A(k))∗W̃; see [3,5–8,31] for further details.

5.3.2. The polar-coordinate method (“analytic orthogonalization”) An alter-
native method proposed in [31] is to encodeW = γ�, where “angle”� = ω1∧· · ·∧
ωk is the exterior product of an orthonormal basis {ω j } of Span {W1, . . . , Wk} evol-
ving independently of γ by some implementation (for example, Davey’s method)
of continuous orthogonalization and “radius” γ is a complex scalar evolving by a
scalar ODE slaved to �, related to Abel’s formula for evolution of a full Wronskian;
see [31] for further details. This might be called “analytic orthogonalization”, as the
main difference from standard continuous orthogonalization routines is that it res-
tores the important property of analyticity of the Evans function by the introduction
of the radial function γ (� by itself is not analytic).

5.3.3. Comparisons

– Advantages/disadvantages: The exterior-product method is linear, but evol-
ving in a high-dimensional (∼ nn) space. The polar-coordinate method is non-
linear, hence less well conditioned and involving more complicated function
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calls, but evolving on a lower-dimensional manifold (∼ n2). Thus, there is a tra-
deoff in dimensions versus conditioning, with the polar-coordinate method the
only reasonable option for high-dimensional systems and the exterior-product
method somewhat faster and more efficient for low-dimensional systems [31].
Both methods are effective (and reasonably comparable in efficiency) for n � 7
or so.

– Role as numerical check: Since the two methods involve completely different
ODE, one linear and the other nonlinear, agreement in their results is strong, if
indirect, evidence that equations have been properly encoded and solutions accu-
rately approximated, at least on the finite computational domain [−L−, L+].
We address in the following subsection the separate question of determining
appropriate L±.

5.3.4. Determination of approximate spatial infinities Denoting by A(k)
± (λ) the

limits at ±∞ of the lifted matrix A(k±)(x, λ) defined in (5.1), and µ+ (respectively,
µ−) the eigenvalue of A(k)

+ (respectively, A(k)
− ) of smallest (respectively, largest)

real part, we find that there holds a uniform bound

e(A(k)−µ)±x � C∗, x ≶ 0 (5.2)

on any compact subset of �λ � 0, for � bounded from zero, and µ, ν bounded
and bounded from zero, for some C∗ > 0. For λ bounded from zero, this follows
by consistent splitting on {�λ � 0}\{0}, and the choice of k± as dimensions of
stable (respectively, unstable) subspaces of A±, which together imply that, away
from λ = 0, µ± are simple eigenvalues of A(k)

± . For λ near zero, on the other
hand, we may verify directly that µ± are semisimple, by the same considerations
used to verify continuous extension of stable (respectively, unstable) subspaces
of A±: simple in the case of µ−, since the unstable subspace remains uniformly
spectrally separated from remaining eigenvalues of A−; semisimple in the case of
µ+, because hyperbolic characteristics a+

j are simple, and thus eigenvalues µ+
j of

small real part, by the standard theory of [19,35,55], are analytic and semisimple,
of form µ+

j ∼ −λ/a+
j , whence µ+ (the sum of the k+ = 3 eigenvalues of largest

real part) is semisimple as well.
Applying the “quantitative gap lemma” of Theorem C.2, [3], we have therefore

that the relative error between the solution W±(±L±) at plus or minus approximate
spatial infinity x = ±L± and the constant-coefficient initialization V±eµ±±L± is
bounded by ε

1−ε
, for

ε := C∗|A(k)(·, λ) − A(k)
± (λ)|L1(±L ,±∞). (5.3)

Using the bound |M (k)| � k|M | established in Appendix E, and the asymptotic
behavior

A j (x, λ) − A j,±(λ) ≈ Q j e
−θ±|x |, (5.4)
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A =: λA1 + A0 for x → ±∞, we may thus estimate

max
|λ|��

|A(k)(·, λ) − A(k)
± (λ)|L1(±L ,±∞) � max

|λ|��
k|A(·, λ) − A±(λ)|L1(±L ,±∞)

≈ max
|λ|��

k|A(±L±, λ) − A±(λ)|
θ±

� k
|A0(±L±) − A0,±| + �|A1(±L±) − A1,±|

θ±

= k
|A(±L±, 0) − A±(0)|

θ±

+ k
|A(±L±,�) − A±(�) − (A(±L±, 0) − A±(0))|

θ±
.

This gives a theoretical relative error bound of TOL (tolerance) between ini-
tializing basis at ±L and actual basis for the theoretical Evans function, provided
that

C∗k

( |A(±L±, 0) − A±(0)|
θ±

+ |A(±L±,�) − A±(�) − (A(±L±, 0) − A±(0))|
θ±

)

� TOL

1 + TOL
≈ TOL,

or, approximately,

|A(±L±, 0) − A±(0)| + |A(±L±,�) − A±(�) − (A(±L±, 0) − A±(0))|
� θ±

C∗k
TOL.

(5.5)

Remark 5.2. Alternatively, working directly from (5.4), we may solve (5.5) with
equality for

L± ≈ log C∗ + log k + log(|Q±
0 | + �|Q±

1 |) + log θ−1± + log TOL−1

θ±
. (5.6)

A reasonably good bound (noting insensitivity of log, and also cancellation in large
λ versus small θ effects) for k = 2, � ∼ 102, TOL = 10−3, |Q1| = 1 for the
sparse matrix Q1, C∗ = 102, and throwing out θ and |Q0| terms as negligible for
large |λ|, is

L± ≈ log 2 + 7 log 10

θ±
≈ 17

θ±
.
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Table 2. L+(θ+)/L−(θ−) versus �, v+
v+ = 0.7

� L− θ− 17/θ− L+ θ+ 17/θ+
0.2 68 0.28 61 68 0.27 61
0.4 75 0.26 67 74 0.26 67
0.6 83 0.23 74 81 0.23 74
2/3 85 0.22 76 83 0.23 76
0.8 90 0.21 81 87 0.22 81
1.0 98 0.20 87 92 0.21 87

v+ = v∗
� L− θ− 17/θ− L+ θ+ 17/θ+
0.2 22 0.91 19 24 0.83 19
0.4 28 0.70 25 27 0.71 25
0.6 34 0.57 30 31 0.61 30
2/3 36 0.53 32 33 0.59 32
0.8 41 0.48 36 36 0.54 36
1.0 47 0.41 42 40 0.48 42

Table 3. Convergence of W̃+(0), W−(0), and D as L increases from 25 to 50, incrementing
by 5, for a diatomic gas (γ = 7/5 and ν/µ = 1.47

L Rel(W̃+(0)) Rel(W−(0)) Rel(D)

20 2.2(−2) 5.8(−3) 3.8(−3)
25 3.3(−3) 8.8(−4) 4.6(−4)
30 4.7(−4) 1.3(−4) 5.3(−5)
35 6.4(−5) 1.8(−5) 5.7(−6)
40 8.7(−6) 2.6(−6) 8.9(−7)
45 1.1(−6) 3.5(−7) 2.2(−7)

The values were computed for a quarter circle of radius R = 69 consisting of 90 points.
Relative errors were computed at each point and the maximum value along the contour is
reported with the next higher value of L being the baseline

5.3.5. Numerical algorithm Starting with the values needed for accurate profile
approximation, we increment L± by some fixed step-size (here, we have chosen
step-size 5) until (5.5) is satisfied, taking k = 2, TOL = 10−3, and conservatively
estimating C∗ = 102. In Table 2, we have displayed values of θ±, L± computed
from (5.5) with TOL = 10−3, C∗ = 102, for various values of � and v+, with
µ = 1 and ν set to the value ν = (3/4)

9γ−5
4 , γ = � + 1, predicted by the kinetic

theory of gases; see Appendix B. In principle, C∗ could be estimated numerically
for a more precise bound. In practice, convergence studies reveal these bounds to
be rather conservative; see Table 3, or [3,27] in the isentropic case.

5.3.6. Translation to x = 0. The above-described algorithm is designed to
achieve relative accuracy TOL of W± at x = ±L±, whereas the accuracy of the
Evans function is determined, rather, by their relative errors at x = 0. A complete
description of the error must thus include also a discussion of possible magnifi-
cation through the evolution from ±L± to 0. However, as discussed in [6,7], the
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flow toward x = 0 is in fact quite stable, since, by construction, the modes W±
we seek to approximate are the fastest decaying in the flow toward infinity, hence
the fastest growing in backward flow toward zero, with all other modes decaying
exponentially in relative size. Thus, in practice, the resulting magnification in error
is negligible; see [6,7] for further discussion or numerical studies.

Remark 5.3. Since the polar-coordinate method computes the same quantity W in
different coordinates, the initialization error bounds derived for the exterior-product
method apply also for the polar-coordinate method, and so the same values L± may
be used for both computations.

5.3.7. ODE protocol Following [3,5–8,31], to further improve the numerical
efficiency and accuracy of the shooting scheme, we rescale W and W̃ to remove
exponential growth/decay at infinity, and thus eliminate potential problems with
stiffness. Specifically, we let W(x) = eµ−xV(x), where µ− is the growth rate of
the unstable manifold at x = −∞, and we solve instead

V ′(x) = (A(k)(x, λ) − µ− I )V(x).

We initialize V(x) at x = −∞ to be the eigenvector of A(k)
− (λ) corresponding to

µ−. Similarly, it is straightforward to rescale and initialize W̃(x) at x = +∞. To
produce analytically varying Evans function output, the initial data V(−L−) and
Ṽ(L+) must be chosen analytically using (3.12). The algorithm of [8] works well
for this purpose, as discussed further in [3,31].

The ODE calculations for individual λ are carried out using MatLab’s ode45
routine, which is the adaptive 4th-order Runge–Kutta–Fehlberg method (RKF45),
after scaling out the exponential decay rate of the constant-coefficient solution at
spatial infinity, as described just above. This method is known to have excellent
accuracy [5,31]; in addition, the adaptive refinement gives automatic error control.
Typical runs involved roughly 300 mesh points per side, with error tolerance set to
AbsTol = 1e-6 and RelTol = 1e-8.

5.4. Winding number computation

We compute the winding number for fixed parameter values about the semicircle
∂{λ : �λ � 0, |λ| � �} by varying values of λ along 180 points of the contour,
with mesh size taken quadratic in modulus to concentrate sample points near the
origin where angles change more quickly, and summing the resulting changes in
arg(D(λ)), using � log D(λ) = argD(λ)(mod2π), available in MatLab by direct
function calls. As a check on winding number accuracy, we test a posteriori that
the change in argument of D for each step is less than π/8. Recall, by Rouché’s
Theorem, that accuracy is preserved so long as the argument varies by less than π

along each mesh interval.

6. Numerical results

Finally, we describe our numerical results in various cases, using the numerical
method just described, varying v+ between 0.7 and the theoretical lower value



Spectral Stability of Ideal-Gas Shock Layers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ

v
+

M=∞

M=3

M=2

M=1.4

M=1.6

Fig. 5. Iso-Mach curves in �, v+

v∗ in our rescaled coordinates (2.12). For comparison between these and standard
coordinates, it is useful to convert these values to their associated Mach number, a
standard dimensionless measure of shock strength discussed further in Appendix D.

As computed in (D.1), this is given by M =
√

2√
(�+2)(v+−v∗)

, which reduces when

1 − v+ is small, using (2.33), to

M = 1√
1 − (1 − v+) 2+�

2

≈ 1 + (1 − v+)
2 + �

4
� 1 + |1 − v+|

for the range � ∈ [0, 2] under consideration. In particular, for the upper limit
v+ = 0.7 of our computations, we have on the reduced range 0 � � � 1 the
exact upper bound M � (0.55)−1/2, or approximately Mach 1.35, well within the
small-amplitude regime. Recall that stability of small-amplitude shocks has been
shown analytically in [30].

The smallest computed physical value v+ − v∗ = 10−3 corresponds to Mach
M ∼ 100, at which we see already convergence of the Evans function to that of
the nonphysical limit v+ = v∗, corresponding to Mach M = ∞. For a visual
comparison, we display iso-Mach (constant Mach number) curves in the �-v+
plane in Fig. 5.

6.1. Description of experiments: broad range

In the main case considered, of µ and ν of comparable but wide-ranging size,
a first set of experiments was carried out in the range � ∈ [0.2, 2], ν ∈ [0.2, 5],
sampling at mesh points

(�, ν) ∈ {0.2, 0.4., 0.6, 2/3, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}
× {0.2, 0.5, 1.0, 2.0, 5.0},
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Fig. 6. Convergence to the limiting Evans function as v+ → v∗ for a monatomic gas,
� = 2/3, µ = ν = 1, v∗ = 1/4. The contours depicted, going from inner to
outer, are images of the semicircle of radius 25 under the Evans function D for v+ =
0.7, 0.6, 0.5, 0.4, 0.35, 0.3, 0.27, 0.26, 0.255, 0.251, 0.2501. The outermost contour is the
image under the limiting Evans function D∗, which is essentially indistinguishable from the
images for v+ = 0.251 and v+ = 0.2501
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Fig. 7. Blowup of the contour for � = 2/3, µ = ν = 1 at smallest amplitude v+ = 0.7
(Mach M ≈ 1.25), showing convergence to the high-frequency approximant
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55 pairs in all, where, for each value (�, ν), v+ was varied among 8 mesh points on
a logarithmic scale from 0.7 to v∗, for a total of 440 runs in all. In each of the cases
that we examined, the winding number was zero, indicating spectral stability and
thereby nonlinear stability and existence of shock layers in the vanishing viscosity
limit, by the results of [22–24,36,54]. These runs took 12 days to complete, of
which 8 days were spent on the upper extreme case ν = 5, and 2 days were spent
on the lower extreme case ν = 0.2, both out of physical range.

6.2. Description of experiments: physical range

A second set of experiments was carried out for � values corresponding to
monatomic, diatomic, etc., gas on a refined mesh for ν within the smaller, physical
range ν ∈ [1, 2] indicated by Appendices A and B, sampling at

(�, ν) ∈ {2/11, 2/9, 2/7, 2/5, 2/3}
× {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0},

with v+ again varied among 8 mesh points on a logarithmic scale from 0.7 to v∗,
again a total of 440 runs. The results again were winding number zero for each case
tested, indicating spectral stability. These runs took 10 days to complete. We remark
that runs for ν = 5 and ν = 0.2 took over twice as long to complete compared with
the average, again reflecting the stiffness alluded to in Remark 5.1, associated with
difference in scale between ν and µ = 1.

Appendix A. Gas constants for air

In this appendix, we list the various relevant gas constants for dry air at normal
temperatures and pressures. For the specific gas constant (universal gas constant
R ≈ 8.3 J

moles·K divided by molar mass), we have

R̄ ≈ 287.05
J

kg · K
,

J = Joules, kg = Kilograms, K = degrees Kelvin [9]. For specific heat at constant
volume, we have

cv ≈ 716
J

kg · K

at 0 ◦C (degrees Celsius) [50]. Computing the dimensionless quantity � = R̄/cv ,
we thus obtain

� ≈ 0.401,

in remarkable agreement with the value � = 0.4 predicted by statistical mechanical
approximation � = 2

2n+1 for a diatomic gas, n = 2. (Recall that air is composed
of roughly 78% nitrogen, 21% oxygen, and 1% neon, so it is essentially a diatomic
mixture.)
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For thermal conductivity, the ratio of heat flux to temperature gradient asserted
by Fourier’s law of heat conduction, we have the value

κ ≈ 0.025
W

m · K
,

W = Watts = Joules per second, and for dynamic or “first” viscosity, the rate
of proportionality of shear stress to velocity gradient of a shear flow asserted in
Newton’s law of viscosity, the value

µ1 ≈ (1.78) × 10−5 kg

m · s
,

m = meters, s = seconds [9,52]. Collecting these values, we may compute the
“constant-volume Prandtl number”

Prv := cvµ1/κ ≈ (716)(1.78) × 10−5

(0.025)
≈ 0.510, (A.1)

or very nearly 1/2. This is related to the usual (constant-pressure) Prandtl number
Pr := cpµ1/κ by Prv = Pr/γ , where γ := cp/cv is the heat capacity ratio, or
adiabatic index, relating specific heat at constant pressure cp to specific heat at
constant volume cv , under ideal gas assumptions, γ = 1+�. For a variety of gases
over a fairly wide range of temperatures [52, p. 43], Pr ≈ 0.7.

Recall that the effective viscosity appearing in the one-dimensional Navier–
Stokes equations is µ = 2µ1 + µ2, the sum of twice the dynamic viscosity and
the “second viscosity” µ2, which is commonly taken as µ2 = −(2/3)µ1 based on
the assumption that pressure equals “mean pressure” defined as one-third the trace
of the three-dimensional stress tensor, an approximation that appears to be in good
agreement with experiment at least for monatomic and diatomic gases [4,43]. We
therefore take µ ≈ (4/3)µ1, giving

ν/µ = (3/4)Pr−1
v ≈ 1.47. (A.2)

Interesting values for computation are thus � = 0.4 (γ = 1.4), ν/µ = 1.47,
modeling air.

Remark A.1. A convenient alternative formula involving commonly tabulated
dimensionless quantities is

ν/µ = (3/4)γ Pr−1, (A.3)

where Pr denotes (usual) Prandtl number and γ = cp/cv the adiabatic index.
Assuming the value Pr ≈ 0.7 typical of simple (for example, monatomic, diatomic)
gases, we obtain the general rule of thumb

ν/µ ≈ (1.09)γ ; (A.4)

see Table 4 for more precise values.
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Remark A.2. We note also the alternative formula

� =
(

cp

R̄
− 1

)−1

for the Gruneisen constant in terms of specific heat at constant pressure. (For air,
cp ≈ 1 J/g · K = 1, 000 J/kg · K.)

Appendix B. Gas constants for other gases

Appendix B.1. Ideal gases

Using the dimensionless formula (A.3), we next investigate typical parameter
values for some common gases. For an ideal gas, the Prandtl number is predicted
by Eucken’s formula [10]

Pr = 4γ

9γ − 5
, (B.1)

giving in combination with (A.3) the simple relation

ν/µ = (3/4)
9γ − 5

4
. (B.2)

We display in Table 4 the relation for various gases between the theoretical value
(B.1) and experimentally measured values for Pr (Table 1.9-1 of [10], adapted
from [34, p. 250]). Though not displayed, experimental values of the adiaba-
tic index γ = cp/cv match theoretical predictions to within 1% for monatomic
and diatomic gases, 3% for triatomic, and 4.8% for five-atomic gas CH4, as do
experimental values versus theoretical predictions of the Gruneisen coefficient
� = R̄/cv .

In summary, the equation of state and temperature law predicted by ideal gas
theory appear to be extremely accurate at usual temperatures, while the predictions
involving viscosity (µ, Pr, κ) degrade with molecular complexity, being nearly
exact for monatomic gases, quite good for most diatomic gases, but only a first
approximation for triatomic and more complicated gases. Indeed, the derivation of
viscosity and heat conduction formulae involves additional simplifying assump-
tions whose validity degrades with structural complexity [10]. Thus, we may use
with some confidence the theoretical prediction (B.2) for simple gases, but must
consult experimental data for complex gases.

Remark B.1. From (2.7) and (B.1), we obtain the theoretical range

γ ∈ [1, 1.66 . . .], ν/µ ∈ [0.75, 1.88].
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Table 4. Theoretical versus experimental values of Pr and ν/µ and relative error in ν/µ at
20 ◦C = 68 ◦F (room temperature)

Gas γ (th.) Pr (th.) Pr (exp.) ν/µ (th.) ν/µ (exp.) Relative error (%)

He 5/3 0.667 0.694 1.88 1.80 4
Ar 0.669 1.87 0.05
H2 7/5 0.737 0.712 1.43 1.47 2
N2 0.735 1.43 0
O2 0.732 1.43 0
CO 0.763 1.38 3.5
CO2 4/3 0.762 0.819 1.31 1.22 6.8
H2S 0.929 1.08 17.6
SO2 0.833 1.17 10.7
CH4 5/4 0.8 0.777 1.17 1.28 9.5

Appendix B.2. Temperature dependence and the kinetic theory of gases

Though the ratio (B.1) of viscosity and heat conductivity predicted by the kinetic
theory of gases is constant, the absolute size predicted for either one depends on
temperature, T . For example, the predicted viscosity for a monatomic gas obtained
through Chapman–Enskog expansion of the Boltzmann equations with hard-sphere
potential is Chapman’s formula

µ1 = µ1(T ) = (2/3)

√
mkT

πσ 2 , (B.3)

where m is mass per particle in kilograms kg, k is the Boltzmann constant in
Joules per degrees Kelvin J/K, T is temperature in degrees Kelvin K, and σ is
the collision cross section in meters squared m2, given approximately by one-half
diameter squared [4,10]. This appears to give good physical agreement, and a
refined version given by Sutherland’s formula

µ1 = (1 + m̃)T 3/2

T + m̃
, (B.4)

m̃ constant, to give extraordinarily good agreement [10]. More generally, viscosity
is typically modeled by

µ1 = CT q , 1/2 � q � 1, (B.5)

with q ≈ 0.76 for air [33].
Properly, we should include the above-described temperature-dependence in

the physical study of large-amplitude shock layers. Though beyond the scope of
the present project, this appears to be feasible by a slight modification of the same
techniques, as we discuss further in Appendix F.
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Appendix C. Liquids and dense gases

For comparison, values of the Prandtl number Pr for various media at 20 ◦C are
[52, p. 80]:

– Around 0.024 for mercury
– Around 0.7 for air and helium
– Around 7 for water
– Around 16 for ethyl alcohol
– Around 10, 000 for castor oil
– Around 12, 000 for glycerin

The adiabatic index (specific heat ratio) of water is γ ≈ 1.01 ≈ 1.0; hence

ν/µ = γ /Pr ≈ Pr−1 ≈ 0.143,

quite far from the gas values of Table 4.
Moreover, for dense gases or liquids, the ideal gas assumptions break down,

and the polytropic equation of state (2.6) must be replaced by more sophisticated
versions such as Peng–Robinson or “stiffened polytropic” equations of state [25,
26]. For example, water is often modeled by a stiffened equation of state

p = �ρe − γ P0 (C.1)

behaving like a prestressed material, with base stress P0 and � determined empiri-
cally: for example, γ ∼ 6.1 and

P0 = 2, 000 MPa = 2 × 109 N/m2 = 2 × 109 kg/m · s2

or γ = 7.42 and P0 = 296.2 MPa [25,26]. Similar techniques are used to model
liquid argon, nickel, mercury, etc. [11,26].

It would be very interesting to investigate the effects on stability of these modi-
fications in the polytropic equation of state. For the moment, what we can say,
physically, is that insofar as they conform to a polytropic (ideal gas) equation of
state, shock waves are stable. However, above a critical density, even standard,
simple (for example, monatomic or diatomic) gases are observed not to conform
to a polytropic law [13], and in this regime our mathematical conclusions hold no
sway.

Appendix D. Computation of the Mach number

A dimensionless quantity measuring shock strength is the Mach number

M = u− − σ

c−

(for a left-moving shock), where u− is the downwind velocity, σ is the shock speed,
and c− is the downwind sound speed, all in Eulerian coordinates. The conservation
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of mass equation in Eulerian coordinates is ρt + (ρu)x = 0, giving jump condition
σ [ρ] = [ρu], or, in Lagrangian coordinates,

σ = u+v− − u−v+
v− − v+

.

Thus,

M = u− − σ

c−
= v−(u− − u+)

c−(v− − v+)
= v−[u]

c−[v] = −s
v−
c−

,

which, under our normalization s = −1, v− = 1, gives

M = c−1− = (�(1 + �)e−)−1/2

or, using e− = (�+2)(v+−v∗)
2�(�+1)

,

M =
√

2√
(� + 2)(v+ − v∗)

. (D.1)

In the strong-shock limit v+ → v∗, M ∼ (v+ − v∗)−1/2; in the weak shock limit
v+ → 1, M → 1.

Appendix E. Lifted matrix bounds

We establish the following useful bound on the operator norm of the “lifted”
matrix A(k) acting on k-exterior products V = V1 ∧ · · · ∧ Vk by the operation

A(k)V := AV1 ∧ · · · ∧ Vk + · · · + V1 ∧ · · · ∧ AVk .

induced by a given matrix A, where A(k) by convention is represented with respect
to standard basis elements e j1 ∧ · · · e jk .

Lemma E.1. In the matrix operator norm | · |p with respect to �p,

|A(k)|p � k|A|p, 1 � p � ∞. (E.1)

Proof. It is sufficient to establish (E.1) for p = 1 and p = ∞, the result for other
p following from the Riesz–Thorin interpolation theorem

|M |p � |M |θ1
s1

|M |θ2
s2

,

θ j > 0, θ1 + θ2 = 1, for s1 < p < s2.
The �1 operator norm is equal to the maximum over all columns of the sum of

moduli of column entries, or, equivalently, the maximum �1 norm of the image of
a standard basis element. Applying this definition to A(k), we find readily that the
�1 norm of the image of a standard basis element is bounded by the sum of the �1

norms of k terms of form

Ae j1 ∧ · · · ∧ e jk ,

expanded in standard exterior product basis elements. As each of these clearly has
�1 norm bounded by the �1 norm of Ae j1 , and thus by |A|1, we obtain the result for
p = 1. The result for p = ∞ may be obtained by duality, using (A(k))∗ = (A∗)(k)

together with |M |∞ = |M∗|1. 
�
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Appendix F. Temperature-dependent viscosity

Finally, we discuss the changes needed to accommodate a common tempera-
ture or other dependence in the coefficients of viscosity and heat conduction. For
concreteness, we focus on the case

µ(e) = µ∗eq , κ(e) = ν∗eq , 0 � q � 1, (F.1)

µ∗, ν∗ constant, encompassing the Chapman formula (B.3) predicted by the kinetic
theory of gases as well as the more general formula (B.5), indicating afterward by
a few brief remarks the extension to more general situations.

Appendix F.1. Rescaling

Under (2.5), (F.1), it is easily checked that the Navier–Stokes equations are
invariant under the modified rescaling

(x, t, v, u, T ) → (−εs|εs|−2q x, εs2|εs|−2q t, v/ε,−u/(εs), T/(ε2s2)), (F.2)

consisting of (2.12) with x and t rescaled by the common factor |εs|−2q . For the
Chapman viscosity q = 1/2, this reduces to

(x, t, v, u, T ) → (−(sgn s)x, |s|t, v/ε,−u/(εs), T/(ε2s2)), (F.3)

essentially undoing the rescaling in the x-coordinate. Evidently, the Rankine–
Hugoniot analysis of Section 2.4 goes through unchanged.

Appendix F.2. Profile equations

The profile equations (2.24)–(2.25) are unaffected by dependence of µ, κ .
Setting ν∗ := κ∗/cv , and making the change of independent variable

dx

dy
= µ = µ∗eq , (F.4)

we may thus reduce them to the form

v′ = 1

µ∗
[
v(v − 1) + �(e − ve−)

]
, (F.5)

e′ = v

ν∗

[
− (v − 1)2

2
+ (e − e−) + (v − 1)�e−

]
(F.6)

already treated in the constant-viscosity case, ′ = d
dy . To obtain the profile in

original x-coordinates, we have only to recover the change of coordinates x = x(y)

by solving (F.4) with e = ê(y), ê the constant-viscosity profile.
Recalling that ê(y) = e± + O(e−θ |y|), θ > 0 for y ≷ 0, where e+ > 0

and e− > 0 except in the strong-shock limit v+ → v∗, we find that x and y are
equivalent coordinates on x > 0, and on x < 0 are equivalent for v+ bounded from
the strong-shock limit v∗. However, in the strong-shock limit v+ = v∗, e− = 0, we
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have the interesting phenomenon that the x < 0 part of the shock profile terminates
at a finite value X− = x(−∞), since

|x(−∞)| =
∣∣∣∣
∫ −∞

0
(e(y)/cv)

q dy

∣∣∣∣ � C
∫ −∞

0
e−qθ |y| dy < +∞.

Remark F.1. Holding (v, u, e)− fixed and varying v+ toward its minimum value
v∗, we find that

s = √−[p]/[v] → ∞

as p+ ∼ e+ ∼ (e+/e−) ∼ (v+ − v∗)−1, since v+ is bounded from zero, e− is
being held constant, and ratio e+/e− is independent of scaling so may be computed
from formulae (2.34)–(2.35). Thus, shock width in the constant-viscosity case is
of order |v+ − v∗| going to zero as shock strength (measured in specific volume v)
goes to its maximum value of |1 − v∗|. By comparison, for the Chapman viscosity
µ ∼ e1/2, the shock width remains approximately constant in the strong-shock
limit, a significant deviation in the theories. See, for example, [26,51] for further
discussion of this and related points.

Remark F.2. Clearly, the same procedure may be used to determine profiles for
arbitrary µ = µ(v, u, e), κ/µ constant, setting dx

dy = µ(v, u, e) in (F.4).

F.2.1. Limiting behavior The limiting profile equations at v+ = v∗ are

v′ = 1

µ∗
[v(v − 1) + �e] , (F.7)

e′ = v

ν∗

[
− (v − 1)2

2
+ e

]
. (F.8)

Linearizing about U− gives

(
v

e

)′
= M

(
v

e

)
, M :=

(
µ−1∗ �µ−1∗

0 ν−1∗

)
. (F.9)

For ν∗/µ∗ > 1, we have, therefore, that the slow unstable manifold at −∞ is tangent
to (�(ν∗/µ∗)/(1 − (ν∗/µ∗)), 1), with growth rate ∼ e−ν−1∗ y , and thus generically

êy

ê
∼ 1

ν∗
,

û y

ê
= v̂y

ê
∼ �/µ∗

1 − ν∗/µ∗
as y → −∞. (F.10)

For ν∗/µ∗ < 1, the slow manifold is tangent to (1, 0), and we have the opposite

situation that, generically, êy

ê ∼ µ−1∗ , û y

ê → ±∞ as y → −∞.
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Appendix F.3. Eigenvalue equations

Computing the linearized integrated eigenvalue equations as in Section 3.1 and
making the change of variables (F.4), we obtain after some rearrangement, the
modified, temperature-dependent equations

λµ̂v + v′ − u′ = 0,

λµ̂u +
[

1 + qêy

êv̂
− qû2

y

µ̂êv̂

]
u′ +

[
�

v̂
− qûy

êv̂

]
ε′+�û y

v̂
u +

[
−�ê

v̂2 + û y

v̂2

]
v′=u′′

v̂
,

(F.11)
λµ̂ε + ε′ +

[
û y − ν∗û yy

v̂

]
u +

[
�ê

v̂
− (ν∗ + 1)

û y

v̂
− qν∗û y êy

µ̂êv̂

]
u′

+
[
ν∗êy

v̂2

]
v′ = ν∗

v̂
ε′′,

′ = d
dy , where (v̂, û, ê) = (v̂, û, ê)(y) are just as in the constant-viscosity case.

This yields a first-order eigenvalue system

W ′ = A(y, λ)W, (F.12)

A(y, λ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0
λµ̂ν−1∗ v̂ ν−1∗ v̂ ν−1∗ v̂û y − û yy λµ̂g(Û ) g(Û ) − h(Û )

0 0 0 λµ̂ 1
0 0 0 0 1

0 � − qûy

ê λµ̂v̂ + �û y λ

(
µ̂v̂ − qû2

y

ê

)
f (Û ) − λµ̂

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(F.13)

W = (ε, ε′, u, v, v′)T , ′ = d

dy
, (F.14)

where

f (Û ) := û y − �ê

v̂
+ v̂

(
1 + qêy

êv̂
− qû2

y

µ̂êv̂

)

= 2v̂ − 1 − �e− +
(

qêy

ê
− qû2

y

µ̂ê

)
,

(F.15)

g(Û ) := ν−1∗
(
�ê − (ν∗ + 1)û y

) − qûy êy

µ̂êv̂
, (F.16)

h(Û ) := − êy

v̂
= −ν−1∗

(
− (v̂ − 1)2

2
+ (ê − e−) + (v̂ − 1)�e−

)
, (F.17)

µ̂ := êq , (F.18)

reducing for q = 0 to that of the constant-viscosity case. We omit the details, which
are straightforward but tedious.
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Noting that all terms not appearing in the constant-viscosity case involve deri-
vatives of the profile, hence vanishing at y = ±∞ so long as e± (appearing in
denominators) do not vanish, we may conclude by the constant-viscosity analy-
sis consistent splitting away from the strong-shock limit v+ → v∗, e− → 0. We
may thus construct an Evans function that is analytic in λ and continuous in all
parameters away from the strong-shock limit.

F.3.1. Limiting behavior Assume, as for the physical cases considered above,
that

ν/µ ≡ ν∗/µ∗ > 1. (F.19)

Then, by the limiting analysis (F.10), all terms in A(y, λ) remain bounded and well
defined in the strong-shock limit. Thus, we may hope for convergence as in the
constant-viscosity case.

On the other hand, new terms êy/ê, û y/ê of order

ê − e−
ê

= 1 − e−
ê

exhibit singular behavior in the v+ → v∗, e− → 0 limit reminiscent of that of
the isentropic case [27]. In particular, since e−/ê approaches its limiting value 1
as y → −∞ only as |ê − e−|/e−, this means that |A − A±| does not decay at
uniform exponential rate as y → −∞, but only as O(e−1− e−θ |y|), θ > 0, so that the
strong-shock limit is a singular perturbation in the sense of [27,42] and not a regular
perturbation as in the constant-viscosity case. Thus, an analysis of behavior in the
strong-shock limit is likely to involve a delicate boundary-layer analysis similar to
that of [27] in the isentropic case. This appears to be a very interesting direction
for further investigation.

Remark F.3. The appearance of condition (F.19) is unexpected, dividing into two
cases the physical behavior in the strong-shock limit.

Remark F.4. Our numerical experiments, though still quite preliminary (restricted
to diatomic gas, � = 0.4, ν∗/µ∗ = 1.43, q = 0.5) so far again indicate uncondi-
tional stability, also in the temperature-dependent case.

Appendix F.4. General dependence

We conclude by discussing briefly the case of general, possibly inhomogeneous
dependence of viscosity on (v, u, T ). The homogeneous case goes exactly as before,
working in y-coordinates and noting Remark F.2 and the discussion of Section F.3.

The inhomogeneous case is well illustrated by Sutherland’s formula (B.4).
Fixing a left-hand state (the “true” strong-shock limit), without loss of generality
v− = 1, and taking v+ → v∗, rescale by (F.2) with q = 1/2 and ε = 1, s = s(v+).
The result in the rescaled coordinates is

µ = (4/3)s−1 (1 + m̃)(s2T )3/2

(s2T ) + m̃
= (4/3)

(1 + m̃)T 3/2

T + s−2m̃
, (F.20)
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converging in the strong-shock limit v+ → v∗, s ∼ |v+ − v∗|−1 → ∞ to the
homogeneous Chapman formula

µ = (4/3)(1 + m̃)T 1/2.

Other inhomogeneous laws go similarly, converging in the strong-shock limit in
each case to an appropriate homogeneous law. Thus, inhomogeneous dependence
poses no essential new difficulty.
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