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Abstract— The consensus or agreement problem enables a
team of agents to agree on certain information variables using a
low-bandwidth, dynamic, and sparsely-connected graph. How-
ever, most prior work on agreement protocols has focused on
converging to a single, static variable. In this paper, we propose
a consensus filter that accepts dynamically changing inputs at
each agent. We analyze several properties of this consensus
filter, proving the outputs of the filter converge to a low-pass
filtered version of the average of the inputs. Disagreement
portions of the inputs can be significantly attenuated through
judicious selection of filter parameters.

I. INTRODUCTION

The consensus problem, also called the agreement prob-
lem, is primarily concerned with algorithms and strate-
gies that enable a team of agents, usually moving robotic
agents, to agree on certain information variables using a
low-bandwidth, dynamic, sparsely connected, and potentially
noisy communication channel. Recent work on agreement
algorithms include [1] which considers flocking behavior,
where agents communicate their heading to physically close
neighbors. An important result shown in [1] is that if the
(bi-directional) communication topology is not switching
infinitely fast, and if the union of the communication graphs
over repeated time intervals is connected, then all agents
converge to the same heading. A similar result for directed
graphs is given in [2]. It is important to note that while these
works guarantee convergence, they do not specify the value
to which the network converges. An important contribution
along those lines is [3], where it is shown that a strongly
connected directed graph converges to the average of the
initial conditions of each agent if and only if the graph is
balanced, or in other words, when every agent has the same
number of incoming and outgoing communication links.
Since undirected graphs are balanced, this result implies that
average consensus is achieved in undirected graphs if the
graph is connected.

The agreement protocols proposed in [1], [2], [3] are
concerned with asymptotic agreement starting from initial
conditions. This framework works well if the agreement
problem is static, or rather, if the agents must agree on a
static variable. However, the standard agreement protocol
does not address the case where the agents must agree on
a dynamically changing quantity. In the case where there
is a single, globally known, or globally sensed reference
input, the agreement protocol can be modified to track the
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reference input if the network is connected [4]. However, it is
interesting to pose the agreement problem where each agent
has a different time varying reference input. Is it possible to
achieve consensus on the average of the inputs at each node?

This problem is addressed in [5], [6] where it is called the
dynamic consensus problem. In [5], the standard first order
agreement protocol is extended by adding an input where
the input to the agreement protocol at each node is the time
derivative of the reference input at each node. The analysis
of the convergence properties of their paper is carried out in
the frequency domain, where it is shown that if all of the
reference input signals are decaying to constant values, and
if the consensus protocol is initialized correctly (to zero),
then the nodes converge to the average of the reference
inputs. However, if there is persistent frequency content to
the reference input signals, or if the consensus protocol
is not initialized correctly, then there will be a bounded
steady state error. In [6] a second order agreement protocol
that uses an integrator is introduced to remove the need to
initialize the protocol to zero, and is shown to have additional
robustness properties. The analysis in [6] is conducted in the
time domain and applies to switching networks. However,
implementation requires each node to receive information
not only from its immediate neighbors, but also from its
neighbor’s neighbors.

This paper builds on the work of [5], [6] by proposing
an agreement protocol that uses a integrator in a way that
is similar to [6] but using only neighbor information, and
analyzes the convergence and L2-gain properties of the
protocol in both the time and frequency domains.

Other work that is closely related to this paper is the
controllability and observability of graphs as discussed in
[7, Chapter 10], where some of the nodes are inputs that can
inject signals into the network, while the remaining nodes
execute the standard agreement protocol. Explicit conditions
for controllability and observability are developed and it
is shown that the system states converge. The protocol
developed in [7] is similar in structure to that proposed in [5].

We believe that dynamic or input consensus is an ex-
tremely useful notion for cooperative control. The input
consensus approach has a much more system theoretic feel,
where the effects of initial conditions are attenuated, and
the response to inputs is emphasized. We envision numerous
applications including the case where each agent is making
measurements of a dynamic world and sharing those mea-
surements across the network. The input-output perspective
allows us to talk of consensus filters, as opposed to consensus
protocols.

This paper is organized as follows. In Section II we

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0081-1/11/$26.00 ©2011 AACC 3357



describe the basic input consensus algorithm. In Section III
we analyze the properties of the algorithm, in particular its
convergence to consensus for constant and asymptotically
constant input. In Section IV we explore the filtering aspects
of our algorithm. In Section V we give simulation results,
and our conclusions are in Section VI.

II. INPUT CONSENSUS ALGORITHM

Let L be the Laplacian matrix associated with a simple
undirected graph G = (V,E) where V is the node set and
E is the (symmetric) edge set, and suppose that |V | = n.
The standard continuous-time consensus algorithm is given
by

ż = −Lz. (1)

As shown in [3], if the graph is connected, then z(t) →
1z̄, where z̄ = 1

n

∑n
i=1 zi(0) is the average of the initial

conditions.
Suppose that there is a possibly time-varying input ui at

each node and suppose that the objective is to converge to
the average of the inputs. In this case we propose using the
agreement protocol given by

ż = −κLz(t)− αz(t) + βu(t)− γ
∫ t

0

Lz(τ)dτ, (2)

where α, β, γ, and κ are positive, design constants. We first
note that Eq. (2) is a decentralized algorithm since each node
implements the scheme

żi = βui−αzi−
∑
j∈Ni

[
κ(zi − zj) + γ

∫ t

0

(zi(τ)− zj(τ))dτ
]
,

where Ni ⊂ V is the set of neighbors of node i. The first
term in Eq. (2) is the standard consensus term and tends
to push the values at each node toward each other. The
second term in Eq. (2) is a damping term that is inserted
to remove the effect of the initial conditions of z. The third
term in Eq. (2) is the input at node i. If the inputs at each
node are unique and persistent, then there will be a steady
state difference between the nodes. The final term in Eq. (2)
integrates the error and removes the bias.

By defining

x(t) :=
(

z(t)∫ t
0
Lz(τ) dτ

)
where x(0) =

(
z(0)

0

)
,

we see that Eq. (2) can be written in state space form as

ẋ = Ax+Bu (3a)
z = Cx, (3b)

where

A =
(
−(κL+ αI) −γI

L 0

)
, B =

(
βI
0

)
, C =

(
I 0

)
.

Taking the Laplace Transform, we separate into zero-state
and zero-input components

Z(s) = C(sI −A)−1BU(s) + C(sI −A)−1x(0),

where the transfer function T (s) = C(sI −A)−1B is given
by

T (s) = βs
[
s2I + (κL+ αI)s+ γL

]−1
. (4)

Hence, we can further simplify Z(s) to get

Z(s) = s
[
s2I + (κL+ αI)s+ γL

]−1
(βU(s)+z(0)). (5)

III. PROPERTIES

In this section we will derive some of the properties of
the input consensus protocol (2). We begin by relating the
eigenvalues and eigenvectors of A to the eigenvalues and
eigenvectors of L.

Since G is undirected, L is a symmetric matrix with
orthonormal eigenbasis Q = [q1, . . . , qn] corresponding to
real eigenvalues Λ = diag(λ1, · · · , λn), thus satisfying L =
QΛQT . Without loss of generality, we use the convention
0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Proposition III.1 Assume γ 6= κα. Let λ be an eigenvalue
of L with unit (pairwise orthogonal) eigenvector q. Then the
eigenvalues µ of A take the form

µ = −α+ κλ

2
±

√(
α+ κλ

2

)2

− γλ (6)

and have corresponding left and right eigenvectors, ` and r,
respectively, of the form

` =
(
−µqT γqT

)
(7a)

r =
(

(κµ+ γ)q
−(µ+ α)q

)
. (7b)

These form a complete set of eigenvectors, and thus A is
diagonalizable. Moreover each eigenvalue µ has a corre-
sponding eigenprojection given by

Pµ =
r`

`r
=

(
µ(κµ+ γ)Π −γ(κµ+ γ)Π
−µ(µ+ α)Π γ(µ+ α)Π

)
µ(κµ+ γ) + γ(µ+ α)

(8)

where Π is the rank-one (orthogonal) eigenprojection of λ
given by

Π = qqT . (9)

Thus, we can write A in terms of its spectral decomposition

A =
∑

µ∈σ(A)

µPµ. (10)

Proof: Given our space constraints, we relegate most
of the details to the reader. We remark that the characteristic
polynomial for A is given by

µ2 + (α+ κλ)µ+ λγ.

From this one can easily verify Eq. (6) and the relations
Ar = µr, `A = µ`, and PµA = APµ = µPµ. Note the
row-vector convention used for the left eigenvectors.

Remark III.2 In the case that γ = κα, the matrix A will
have a Jordan block if κΛ− αI is singular, or rather λi =
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α/κ for some λi. The results that follow can be extended to
include this case with a little more work.

Corollary III.3 If the graph G is connected then there
is exactly one null eigenvalue of A, and the remaining
eigenvalues are in the open left half plane. Moreover,

P0 =
(

0 − γ
αΠ0

0 Π0

)
,

where
Π0 =

1
n
1T1

is the rank-one eigenprojection for λ = 0.

Proof: Since G is connected, there is exactly one
null eigenvalue of L and the remaining eigenvalues of L
are positive. By inspection of Eq. (6), we see that all the
eigenvalues of A have negative real part except for the
positive root of the λ = 0 case. Setting µ = 0 in Eq. (8),
we determine P0. Finally, since q1 ∈ span(1) we have that
q1 = 1√

n
1. This gives us the form of Π0 above.

Lemma III.4 If G is connected, then the transfer func-
tion (4) can be written as

T (s) =
β

s+ α
Π0 +

∑
λ>0

βs

s2 + (κλ+ α)s+ γλ
Πλ. (11)

Moreover in the limit, we have

lim
s→0

T (s) =
β

α
Π0.

Proof:

T (s) = βs
[
s2I + (κL+ αI)s+ γL

]−1

= βs
[
QT (s2I + (κΛ + αI)s+ γΛ)Q

]−1

= βsQT
[
s2I + (κΛ + αI)s+ γΛ

]−1
Q

=
n∑
i=1

βs

s2 + (κλi + α)s+ γλi
qiq

T
i .

For λ1 = 0 we have

s2 + (κλ1 + α)s+ γλ1 = s(s+ α).

Therefore T (s) is given by Eq. (11). The s→ 0 limit follows
trivially.

Lemma III.5 Assume G is connected. If x(t0) is the state
of Eq. (3) at time t0, then for t ≥ t0, we have

x(t) = eA(t−t0)P−x(t0)+P0x(t0)+
∫ t

t0

eA(t−s)P−Bu(s) ds,

where P− = I − P0 is the projection onto the stable
eigenspace of A along the null space of A.

Proof: From the Variation of Constants Formula, we
have that

x(t) = eA(t−t0)x(t0) +
∫ t

t0

eA(t−s)Bu(s) ds.

We project x(t) into the stable and center eigenspaces via P−
and P0 by defining x−(t) := P−x(t) and xc(t) := P0x(t).
Since I = P− + P0, we have x(t) = (P− + P0)x(t) =
x−(t) + xc(t). Thus,

x−(t) =eA(t−t0)P−x(t0) +
∫ t

t0

eA(t−s)P−Bu(s) ds

xc(t) =eA(t−t0)P0x(t0) +
∫ t

t0

eA(t−s)P0Bu(s) ds

One can verify that P0B = 0 and eA(t−t0)P0 = P0. Thus
xc(t) = P0x(t0). Adding xc(t) and x−(t) back together
gives the result.

Remark III.6 When t0 = 0, we see that P0x(0) = 0 since
the integrator term is set to zero in x(0); indeed this holds
as long as the initial integrator state averages to zero.

Lemma III.7 Let µ− be the stable eigenvalue with largest
real part, that is, closest to the imaginary axis; define
η = −Reµ−. Then there exists a constant C > 0 such
that ‖eAtP−‖ ≤ Ce−ηt, for all t ≥ 0. The value η is called
the spectral gap of A.

Proof: Using Eq. (10), we can write

eAt =
∑

µ∈σ(A)

eµtPµ.

Combining with P− yields

‖eAtP−‖ ≤
∑

Re(µ)<0

‖eµtPµ‖ ≤ C|eµ−t| = Ce−ηt.

Theorem III.8 (Constant input) If G is connected, then
constant input produces consensus, more precisely, if u(t) =
c for some c ∈ Rn, then

lim
t→∞

z(t) =
β

α
1c̄, (12)

where c̄ = 1
n

∑
ci, that is, c̄ is the average value of ci.

Proof: From Lemma III.5, we have that

x(t) = eAtP−x0 +
(∫ t

0

eA(t−s)P− ds

)
Bc. (13)

We claim that x(t) converges as t → ∞, and thus so does
z(t). Since eAtP− → 0 as t → ∞, it suffices to show that
the integral ∫ ∞

0

eA(t−s)P− ds

exists. Note, however that∫ t

0

‖eA(t−s)P−‖ ds ≤ C
∫ t

0

e−η(t−s) ds =
C

η
(1− e−ηt),
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which converges to C/η as t → ∞. Thus x(∞) and z(∞)
exist. The result then follows from the Final Value Theorem.
From Lemma III.4, we have

lim
t→∞

z(t) = lim
s→0

sZ(s) = lim
s→0

sT (s)
(
c

s
+
z(0)
β

)
=
β

α
Π0c =

β

α
1
(

1
n
1T c

)
=
β

α
1c̄.

Corollary III.9 The DC gain of the system is β
αΠ0.

Theorem III.10 (Asymptotically constant input) Assume
G is connected. If the input u(t) converges exponentially to
a constant value c ∈ Rn, that is, there exists K, ν > 0 so
that ‖u(t)− c‖ ≤ Ke−νt for all t ≥ 0, then Eq. (12) holds.

Proof: Let x̄(t) denote the state function for the
constant input satisfying Eq. (13). The state function for the
asymptotically constant input takes the form

x(t) = eAtP−x0 +
∫ t

0

eA(t−s)P−Bu(s) ds.

It suffices to show that their difference converges to zero.
Note that

‖x(t)− x̄(t)‖ =
∥∥∥∥∫ t

0

eA(t−s)P−B(u(s)− c) ds
∥∥∥∥

≤
∫ t

0

‖eA(t−s)P−‖‖B‖‖u(s)− c‖ ds

≤ CK‖B‖
∫ t

0

e−η(t−s)e−νs ds

= CK‖B‖

te
−ηt η = ν

e−νt − e−ηt

η − ν
η 6= ν

In either case, we have exponential convergence as t→∞.

IV. INPUT CONSENSUS FILTERING

In the prior section, some of the fundamental properties
of our proposed consensus algorithm have been introduced.
However, we would like to shift from discussing a consensus
algorithm to analyzing the proposed system as a filter. To
understand the input consensus filter, we will discuss the
frequency-response and L2 gain of the system.

Define ū(t) = 1
n

∑n
i=1 ui(t) to be the time varying aver-

age of the inputs at each node, and define eu(t) = u(t)− ū1
to be the input disagreement function. Note from Eq. (11)
that the output of the system is

Z(s) =
[

β

s+ α
Π0

+
∑
λ>0

βs

s2 + (κλ+ α)s+ γλ
Πλ

]
(ū(s)1 + eu(s))

= 1
β

s+ α
ū(s) +

∑
λ<0

βs

s2 + (κλ+ α)s+ γλ
Πλeu(s).

Therefore, the output of the system can be decomposed into
a low pass filtered version of the average of the inputs, plus
a filtered version of the input disagreement function. It is
clear that the L2-gain on the average of the inputs is β/α.

Define the state disagreement function as

ex(s) := x(s)− 1
β

s+ α
ū(s).

Proposition IV.1 The L2-gain from eu to ex is

β

κλ2 + α
,

where λ2 is second smallest eigenvalue of L, and is called
the algebraic connectivity of the graph G.

Proof: It is straight forward to show that the L2-gain
of the transfer function

Ti(s) :=
βs

s2 + (κλi + α)s+ γλi

is
β

κλi + α
, (14)

and that the gain-maximizing frequency is ω∗ =
√
γλi.

Since qTi qj = 0 for all i 6= j, the L2-gain is found by
maximizing (14) over i.

Note that the algebraic connectivity λ2 describes the
degree of connectedness of a graph [8], [9], that is, λ2 in-
creases as L becomes more connected. Therefore, increased
connectivity will reduce the effect of input disagreement on
the state.

If we define T1(s) = β/(s + α) and T2(s) = βs/(s2 +
(κλ2 + α)s + γλ2), then Figures 1–4 show the Bode plots
of T1 and T2 as a function of λ2, γ, α, and κ respectively,
where β = α. Figure 1 clearly shows that the L2-gain of T2

decreases as a function of λ2.
Figure 2 shows that while increasing γ does not increase

the L2-gain of T2, it does cause the peaking frequency to
increase in a way that causes the gain of T2 to exceed the
gain of T1 over a certain frequency range. The next result
ensures that the gain on the average of the inputs is always
greater than the gain on the input disagreement.

Proposition IV.2 If the graph G is connected, then
|T1(jω)| > |Ti(jω)|, for each i = 2, . . . , n and for every
ω iff γ ≤ κα+ κ2λi/2.

Proof: Note that

|T1(jω)|2 > |Ti(jω)|2

⇐⇒ β2

α2 + ω2
>

β2ω2

(γλi − ω2)2 + (κλi + α)2ω2

⇐⇒ (γλi − ω2)2 + (κλi + α)2ω2 > ω2(α2 + ω2)

⇐⇒ (2κα+ κ2λi − 2γ)ω2 + γ2λi > 0 (15)

Since G is connected, then Eq. (15) holds for all ω ∈ R iff
γ ≤ κα+ κ2λi/2.
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Fig. 1. Bode plot of T1 and T2 as a function of λ2.
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Fig. 2. Bode plot of T1 and T2 as a function of γ.

Figure 4 shows that increasing κ decreases the L2-gain of
the input disagreement. We would like to be able to select
κ to ensure a specified L2-gain, independent of the network
topology.

Proposition IV.3 If G is connected, a maximum input dis-
agreement L2-gain of 10−a can be achieved by setting
κ = 10aβ

2−2 cos(π/n) .

Proof: From Equation (14), the L2-gain on the input
disagreement is β

κλ2+α
. Noting that the algebraic connec-

tivity λ2 is smallest for a string topology, where, as shown
in [10], λ2 = 2− 2 cos(π/n), we obtain:

β

κλ2 + α
= 10−a

⇐⇒ β

κ(2− 2 cos(π/n)) + α
≤ 10−a

⇐⇒ κ ≥ 10aβ − α
2− 2 cos(π/n)

Since α > 0, we have that

κ ≥ 10aβ
2− 2 cos(π/n)

. (16)
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Fig. 3. Bode plot of T1 and T2 as a function of α.
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Fig. 4. Bode plot of T1 and T2 as a function of κ.

V. SIMULATION RESULTS

To illustrate the properties described above, we simulated
an 8-node system pictured in Figure 5. The parameters
selected for the input consensus algorithm were α = 1 and
β = α. κ was selected according to Eq. (16) to achieve an
L2-gain on the disagreement input of 1

5 (i.e., a = 0.699,
κ = 65.7). The parameter γ was chosen as ακ/2 to ensure
it met the condition specified in Proposition IV.2. The inputs
to the eight nodes were corrupted with noise (sine waves
with random frequency and phase) as shown in Figure 6.

The outputs of the input consensus filter for the example
system are shown in Figure 7. This graph demonstrates
several important features of the input consensus filter,
including:
• Robustness to initial conditions: To demonstrate the

performance of the system with respect to initial condi-
tions, the initial information states of the 8 nodes were
set to −4,−3, . . . , 3, respectively. Note that the outputs
of the nodes quickly converge to the same value despite
the widely varying input conditions.

• Low-pass filtering of input average: The outputs of the
input consensus filter closely follow a low-pass filtered
version of the input average. For comparison, note the
input average denoted by the thick line in Figure 6.

• Attenuation of input disagreement: For comparison of
the input and output disagreement, the axes in Figures 6
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Fig. 5. Graph used to demonstrate the characteristics of input consensus.
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Fig. 6. The inputs to the eight node graph over time, with the true average
denoted by the thick black line in the middle of the inputs.

and 7 are set to the same scale. Note that despite the
large input disagreement, the output disagreement is
barely visible after convergence from initial conditions.

In addition to illustrating these general properties of the
input consensus filter, Figure 7 also demonstrates that the
filter meets or exceeds the design constraints used to select
the parameters for the filter. While the parameters were
selected to have a maximum disagreement gain of 1

5 , the
output disagreement is significantly more attenuated. This
extra attenuation is due to two principle factors. First, κ
was selected using the λ2 for an 8-node string graph as
described in Eq. (16) while the true λ2 is approximately three
times larger. Second, the L2 gain is computed using the q2
portion of the input disagreement. For an n-element graph,
however, this vector is orthogonal to n−2 other components
of the input disagreement, each of which experience higher
attenuation than the component associated with q2. These
two effects cause the realized attenuation to exceed the
design constraint of 1

5 for this system.
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Fig. 7. The outputs of the input consensus algorithm on the eight node
graph.

VI. CONCLUSIONS

This paper proposes a new network agreement protocol for
systems with inputs at each node. The basic idea, similar to
that proposed in [6], is to introduce an integrator that removes
the steady-state error between nodes. We used both time
and frequency domain techniques to analyze the properties
of the protocol. The advantage of our consensus filtering
approach is that initial conditions on the information state
are forgotten, the average is over a time varying input at each
node, and only neighbor information is required. In addition,
the effect of the input disagreement can be significantly
attenuated by judicious selection of the tuning parameters.
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