Math 214 Hwk 10

Problem 1. Compute

$$
\int_{0}^{2} \int_{x}^{2} x \sqrt{1+y^{3}} d y d x
$$

Problem 2. Compute

$$
\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) d x d y
$$

Problem 3. Find the area of the surface given by $z=f(x, y)$ over the region R, where

$$
f(x, y)=\sqrt{a^{2}-x^{2}-y^{2}} \quad \text { and } \quad R=\left\{(x, y) \mid x^{2}+y^{2} \leq a^{2}\right\} .
$$

Problem 4. Find the mass of the sphere of radius R whose density at a given point is proportional to the distance between the point and the z-axis.

Problem 5. Consider a cone of uniform density, radius R and height h.
(a). Find the volume of the cone.
(b). Find the center of mass of the cone.
(c). Find the moment of inertia of the cone rotating about its azmuth.

$$
\text { Answer: } \quad I_{0}=\frac{3 M R^{4}}{10}
$$

Problem 6. Use the change of variables to evaluate the double integral

$$
\iint_{R} \frac{\sqrt{x+y}}{x} d x d y
$$

where

$$
x=u \quad y=u v
$$

and R is the triangle with vertices $(0,0),(4,0),(4,4)$.

