Math 214 Hwk 12

Problem 1. Let C be the curve given by $x(\theta)=2 \cos \theta$ and $y(\theta)=2 \sin \theta$, where $\theta \in[0,2 \pi]$. Compute the integral

$$
\int_{C}(y-x) d x+(2 x-y) d y
$$

Problem 2. Find the area of the region R bounded by the graphs

$$
y=2 x+1 \quad \text { and } \quad y=4-x^{2} .
$$

Problem 3. Find the flux of $F(x, y, z)=(3 x,-4, y)$ through the surface S, where S is the boundary of the region bounded by the plane $x+y+z=1$ and the coordinate planes.

Problem 4. Let $F(x, y, z)=\left(2 z, x, y^{2}\right)$ and S be the surface of the paraboloid $z=4-x^{2}-y^{2}$ and C is the intersection of S with the $x y$-plane. Find

$$
\iint_{S}(\nabla \times F) \cdot \hat{n} d S
$$

Problem 5. Find the electric field produced by a straight infinite (in both directions) wire with a uniform charge density λ.

