Math 214 Hwk 12

Problem 1. Let C be the curve given by $x(\theta) = 2\cos\theta$ and $y(\theta) = 2\sin\theta$, where $\theta \in [0, 2\pi]$. Compute the integral

$$\int_C (y-x)dx + (2x-y)dy$$

Problem 2. Find the area of the region R bounded by the graphs

$$y = 2x + 1$$
 and $y = 4 - x^2$

Problem 3. Find the flux of F(x, y, z) = (3x, -4, y) through the surface S, where S is the boundary of the region bounded by the plane x + y + z = 1 and the coordinate planes.

Problem 4. Let $F(x, y, z) = (2z, x, y^2)$ and S be the surface of the paraboloid $z = 4 - x^2 - y^2$ and C is the intersection of S with the xy-plane. Find

$$\int \int_{S} (\nabla \times F) \cdot \hat{n} dS.$$

Problem 5. Find the electric field produced by a straight infinite (in both directions) wire with a uniform charge density λ .