Math 214 Hwk 5

Problem 1. Cylindrical coordinates are given by (ρ, θ, z) , where (ρ, θ) are the polar coordinates in the x-y plane. We have the following:

 $x = \rho \cos \theta, \quad y = \rho \sin \theta, \quad and \quad z = z.$

Let f(x, y, z) be a given. Using the chain rule, find the following in cylindrical coordinates:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}.$$

This is called the Laplacian of f.

Problem 2. Spherical coordinates are given by (r, θ, ϕ) , where r > 0 is the radius, $0 \le \theta < 2\pi$ is the polar angle in the x - y plane, and ϕ is the angle to the z axis. We have the following:

$$x = r \sin \phi \cos \theta$$
, $y = r \sin \phi \sin \theta$, and $z = r \cos \phi$.

Let f(x, y, z) be a given. Using the chain rule, find the Laplacian in spherical coordinates.

Problem 3 (Extra Credit). Find the Laplacian in parabolic coordinates (u, v, θ) . We have the following:

$$x = uv\cos\theta$$
, $y = uv\sin\theta$, and $z = \frac{1}{2}(u^2 - v^2)$.