Math 214 Hwk 5

Problem 1. Cylindrical coordinates are given by (ρ, θ, z), where (ρ, θ) are the polar coordinates in the $x-y$ plane. We have the following:

$$
x=\rho \cos \theta, \quad y=\rho \sin \theta, \quad \text { and } \quad z=z .
$$

Let $f(x, y, z)$ be a given. Using the chain rule, find the following in cylindrical coordinates:

$$
\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}
$$

This is called the Laplacian of f.
Problem 2. Spherical coordinates are given by (r, θ, ϕ), where $r>0$ is the radius, $0 \leq \theta<2 \pi$ is the polar angle in the $x-y$ plane, and ϕ is the angle to the z axis. We have the following:

$$
x=r \sin \phi \cos \theta, \quad y=r \sin \phi \sin \theta, \quad \text { and } \quad z=r \cos \phi
$$

Let $f(x, y, z)$ be a given. Using the chain rule, find the Laplacian in spherical coordinates.

Problem 3 (Extra Credit). Find the Laplacian in parabolic coordinates (u, v, θ). We have the following:

$$
x=u v \cos \theta, \quad y=u v \sin \theta, \quad \text { and } \quad z=\frac{1}{2}\left(u^{2}-v^{2}\right)
$$

