Math 214 Hwk 7

Problem 1. Using the chain rule, find $\partial w / \partial s$ and $\partial w / \partial t$, where

$$
w=\sin (2 x+3 y), \quad x=s+t, \quad \text { and } \quad y=s-t .
$$

Express your answer in terms of s and t.
Problem 2. Show that

$$
u(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)]
$$

is a solution to the one-dimensional wave equaton

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

Problem 3. Show that any tangent plane to the cone $z^{2}=a^{2} x^{2}+b^{2} y^{2}$ passes through the origin.

Problem 4. A corporation manufactures a product at two locations. The cost of producing x_{1} units at the first location is

$$
C_{1}=0.02 x_{1}^{2}+4 x_{1}+500
$$

The cost of producing x_{2} units at the second location is

$$
C_{2}=0.05 x_{2}^{2}+4 x_{2}+275
$$

If the product sells for $\$ 15$ per unit, find the quantity that should be produced at each location to maximize profit.

Problem 5. Show that a triangle is equilateral if the product of the sines of its angles is maximum.

Problem 6. Use Lagrange multipliers to prove that the product of 3 positive numbers x, y, z, whose sum has the constant value S, is maximum when the 3 numbers are equal. Use this result to prove that

$$
\sqrt[3]{x y z} \leq \frac{x+y+z}{3}, \quad x, y, z>0
$$

