Math 214 Hwk 9

Problem 1. Let I_{z} denote the moment of inertia about the z-axis. First show that the uniform ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

of mass M has the moment

$$
I_{z}=\frac{M}{4}\left(a^{2}+b^{2}\right)
$$

Then find the moment I_{z} for the uniform ellipse

$$
\frac{(x-\alpha)^{2}}{a^{2}}+\frac{(y-\beta)^{2}}{b^{2}}=1
$$

of mass M
Problem 2. Find the moment of inertia for a uniform solid ball of mass M, where the axis of rotation goes through the center of mass.

Problem 3. Use the change of variables to evaluate the double integral

$$
\iint_{R} 48 x y d x d y
$$

where

$$
x=\frac{1}{2}(u+v) \quad y=\frac{1}{2}(u-v)
$$

and R is the square with vertices $(0,0),(1,1),(2,0),(1,-1)$.

