Math 311 Hwk 3

Show your work. Always provide both code and output.

Problem 1 (25 points). If A is an $m \times n$ matrix, show that

$$||A||_{\infty} = \sup_{1 \le i \le m} \left(\sum_{j=1}^{n} |a_{ij}| \right).$$

Problem 2 (25 points). Write a Malab function called jacobIt that performs Jacobi iteration. Make it so that the program gracefully deals with non-convergent sequences.

Problem 3 (10 points). Determine whether the following sets form subspaces of C[-1, 1].

- (a). The set of functions f in C[-1, 1] such that f(-1) = f(1).
- (b). The set of even functions in C[-1, 1].
- (c). The set of continuous nondecreasing functions on [-1, 1].
- (d). The set of functions f in C[-1,1] such that f(-1) = 0 or f(1) = 0.

Problem 4 (10 points). Let $A \in M_n(\mathbb{R})$ be fixed. Determine which of the following are subspaces of $M_n(\mathbb{R})$.

- (a). $S_1 = \{B \in M_n(\mathbb{R}) \mid AB = BA\}$
- (b). $S_2 = \{B \in M_n(\mathbb{R}) \mid AB \neq BA\}$
- (c). $S_3 = \{ B \in M_n(\mathbb{R}) \mid BA = 0 \}$

Problem 5 (10 points). Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a spanning set for the vector space V, and let \mathbf{v} be any other vector in V. Show that $\{\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly dependent.

Problem 6 (10 points). Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be linearly independent vectors in a vector space V. Show that $\mathbf{v}_2, \ldots, \mathbf{v}_n$ cannot span V.

Problem 7 (10 points). Let $S = \{x, 1\}$ and $T = \{2x - 1, 2x + 1\}$ be bases for $\mathbb{R}_1[x]$.

- (a). Find the transition matrix from T to S.
- (b). Use your answer in part (a) to find the transition matrix from S to T.