Math 311 Hwk 3

Show your work. Always provide both code and output.
Problem 1 (25 points). If A is an $m \times n$ matrix, show that

$$
\|A\|_{\infty}=\sup _{1 \leq i \leq m}\left(\sum_{j=1}^{n}\left|a_{i j}\right|\right) .
$$

Problem 2 (25 points). Write a Malab function called jacobIt that performs Jacobi iteration. Make it so that the program gracefully deals with non-convergent sequences.

Problem 3 (10 points). Determine whether the following sets form subspaces of $C[-1,1]$.
(a). The set of functions f in $C[-1,1]$ such that $f(-1)=f(1)$.
(b). The set of even functions in $C[-1,1]$.
(c). The set of continuous nondecreasing functions on $[-1,1]$.
(d). The set of functions f in $C[-1,1]$ such that $f(-1)=0$ or $f(1)=0$.

Problem 4 (10 points). Let $A \in M_{n}(\mathbb{R})$ be fixed. Determine which of the following are subspaces of $M_{n}(\mathbb{R})$.
(a). $S_{1}=\left\{B \in M_{n}(\mathbb{R}) \mid A B=B A\right\}$
(b). $S_{2}=\left\{B \in M_{n}(\mathbb{R}) \mid A B \neq B A\right\}$
(c). $S_{3}=\left\{B \in M_{n}(\mathbb{R}) \mid B A=0\right\}$

Problem 5 (10 points). Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a spanning set for the vector space V, and let \mathbf{v} be any other vector in V. Show that $\left\{\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly dependent.

Problem 6 (10 points). Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be linearly independent vectors in a vector space V. Show that $\mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ cannot span V.

Problem 7 (10 points). Let $S=\{x, 1\}$ and $T=\{2 x-1,2 x+1\}$ be bases for $\mathbb{R}_{1}[x]$.
(a). Find the transition matrix from T to S.
(b). Use your answer in part (a) to find the transition matrix from S to T.

