Math 311 Hwk 4

Show your work. Provide both code and output for programming problems.
Problem 1 (15 points). Let $V=\mathbb{C}^{2}, S=\left\{e^{i \theta}, e^{-i \theta}\right\}$ and $T=\{\cos \theta, \sin \theta\}$.
(a). Find the transition matrix P from S into T.
(b). Find the inverse of P.
(c). Write the vectors in T as linear combinations of elements of S.

Problem 2 (25 points). Let $V=\mathbb{R}^{2}$. As represented in the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$, let

$$
\mathbf{u}_{1}=\binom{1}{2}, \mathbf{u}_{2}=\binom{3}{4} \quad \text { and } \quad \mathbf{v}_{1}=\binom{5}{6}, \mathbf{v}_{2}=\binom{7}{8} .
$$

(a). Find the transition matrix U from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
(b). Use your answer from part (a) to show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
(c). Find the transition matrix V from $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
(d). Use your answer from part (c) to show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2}.
(e). Use parts (a)-(d) to find the transition matrix from $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ to $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Problem 3 (20 points). Let W be the subspace of $C[a, b]$ spanned by $S=$ $\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$ and let $L[f(x)]=\frac{d f}{d x}$.
(a). Find the matrix D representing L on S.
(b). Find the inverse of D.
(c). Use your answer in part (b) to find the anti-derivative of

$$
f(x)=a e^{x}+b x e^{x}+c x^{2} e^{x} .
$$

(d). Use your answer in part (c) to find

$$
\int_{a}^{b} 3 x e^{x}-7 x^{2} e^{x} d x
$$

Problem 4 (15 points). Let W be the subspace of $C[a, b]$ spanned by the set $S=\left\{1, e^{x}, e^{-x}\right\}$, and let $L: W \longrightarrow W$ be given by $L[f]=\frac{d f}{d x}$.
(a). Find the matrix representation A of L in the basis S.
(b). Find the transition matrix P from $T=\{1, \cosh x, \sinh x\}$ into S.
(c). Using similarity, find the representation B of L in the basis T.

Problem 5 (10 points). Write a Malab function called QR that performs $Q R$-decomposition. You can assume that the $m \times n$ input matrix is rank n. Verify your program by decomposing random matrices A into Q and R and then multiplying them back to get A.

Problem 6 (15 points). Write a Matlab function called $\mathrm{ip}(\mathrm{p}, \mathrm{q}, \mathrm{b}, \mathrm{a})$ that will compute the inner product for polynomials $p(x)$ and $q(x)$ of arbitrary degree on the interval $[b, a]$ via

$$
\langle f(x), g(x)\rangle=\int_{a}^{b} f(x) g(x) d x
$$

Hint: Represent the polynomials $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ as row vectors $\left[a_{n} a_{n-1} \ldots a_{1} a_{0}\right]$.

