Math 311 Hwk 5

Show your work. Provide both code and output for programming problems.
Problem 1 (25 points). Consider the basis $\left\{1, x, x^{2}, \ldots\right\}$ of $\mathbb{R}[x]$. Find the first 4 terms (by hand) of the orthonormal basis obtained by Gram Schmidt orthogonalization. Use the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

Problem 2 (25 points). Write a Matlab function that will numerically compute the first n orthonormal polynomals from above problem.

Problem 3 (25 points). Orthogonally project the function $f(x)=e^{x}$ onto $\mathbb{R}^{5}[x]$. Use the inner product from the first problem. Is your answer different than the 5th-order Taylor expansion of e^{x} ? Explain why or why not.

Problem 4 (25 points). Write a Matlab script that generates n data points of a noisy circle of radius 10, centered at $(3,5)$. Then use least squares to "deduce" the radius and center. How close do you get to the known values as the number of data points n increases? Do you recover the original values? Explain why or why not. Your answer may depend on how you generated your data points.

