Math 311 Hwk 6

Show your work.
Problem 1 (10 points). An $n \times n$ matrix A is said to be idempotent if $A^{2}=A$. Show that if λ is an eigenvalue of an idempotent matrix, then $\lambda=0$ or $\lambda=1$.

Problem 2 (40 points). Prove the following for an $m \times n$ matrix A :
(a). If $\mathbf{x} \in \mathcal{N}\left(A^{H} A\right)$, then $A \mathbf{x}$ is in both $\mathcal{R}(A)$ and $\mathcal{N}\left(A^{H}\right)$.
(b). $\mathcal{N}\left(A^{H} A\right)=\mathcal{N}(A)$.
(c). A and $A^{H} A$ have the same rank.
(d). If A has linearly independent columns, then $A^{H} A$ is nonsingular.

Problem 3 (30 points). A linear operator Q on \mathbb{C}^{n} is called unitary if all of its column vectors are orthonormal.
(a). Prove that Q is unitary iff $Q^{H} Q=Q Q^{H}=I$.
(b). Prove that if Q is unitary, then $\|Q \mathbf{x}\|=\|\mathbf{x}\|$ for all $\mathbf{x} \in V$.
(c). Prove that if Q is unitary, then $|\operatorname{det}(Q)|=1$. Is the converse true?

Problem 4 (20 points). Let $V=C[0,1]$ have the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x
$$

Find the angle θ between the vectors x^{2} and x^{4}.

