Math 311 Hwk 6 Show your work.

Problem 1 (10 points). An $n \times n$ matrix A is said to be idempotent if $A^2 = A$. Show that if λ is an eigenvalue of an idempotent matrix, then $\lambda = 0$ or $\lambda = 1$.

Problem 2 (40 points). Prove the following for an $m \times n$ matrix A:

- (a). If $\mathbf{x} \in \mathcal{N}(A^H A)$, then $A\mathbf{x}$ is in both $\mathcal{R}(A)$ and $\mathcal{N}(A^H)$.
- (b). $\mathcal{N}(A^H A) = \mathcal{N}(A).$
- (c). A and $A^H A$ have the same rank.
- (d). If A has linearly independent columns, then $A^{H}A$ is nonsingular.

Problem 3 (30 points). A linear operator Q on \mathbb{C}^n is called unitary if all of its column vectors are orthonormal.

- (a). Prove that Q is unitary iff $Q^H Q = QQ^H = I$.
- (b). Prove that if Q is unitary, then $||Q\mathbf{x}|| = ||\mathbf{x}||$ for all $\mathbf{x} \in V$.
- (c). Prove that if Q is unitary, then |det(Q)| = 1. Is the converse true?

Problem 4 (20 points). Let V = C[0, 1] have the inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx.$$

Find the angle θ between the vectors x^2 and x^4 .