Math 311 Hwk 7
 Show your work.

Problem 1 (20 points). Write a Matlab function called ginv that takes an $m \times n$ matrix A and returns its generalized inverse A^{+}. You may use the built-in svd function.

Problem 2 (20 points). Let A be an $m \times n$ matrix. Prove that $\operatorname{tr}\left(A^{H} A\right)=0$ implies that $A=0$.

Problem 3 (20 points). Show that $\langle A, B\rangle=\operatorname{tr}\left(A^{H} B\right)$ is an inner product on $M_{n}(\mathbb{C})$.

Problem 4 (20 points). Let

$$
A=\left(\begin{array}{lll}
2 & 5 & 4 \\
6 & 3 & 0 \\
6 & 3 & 0 \\
2 & 5 & 4
\end{array}\right)
$$

Using the singular value decomposition, find:
(a). An orthonormal basis for $\mathcal{N}(A)$.
(b). An orthonormal basis for $\mathcal{R}\left(A^{H}\right)$.
(c). An orthonormal basis for $\mathcal{R}(A)$.
(d). An orthonormal basis for $\mathcal{N}\left(A^{H}\right)$.

Problem 5 (20 points). Given

$$
A=\left(\begin{array}{cc}
1 & 2 \\
-1 & -2
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\binom{6}{-4}
$$

(a). Use the generalized inverse to find a least squares solution to the system $A \mathrm{x}=\mathrm{b}$.
(b). Find all solutions to the least squares problem $A \mathbf{x}=\mathbf{b}$.

