Math 316 Practice Exam 1

Problem 1. Prove that $x_n \to x$ implies $x_n^2 \to x^2$

Problem 2. Let $E \subset \mathbb{R}^n$ be nonempty. For $x \in \mathbb{R}^n$, define

$$D(x) = \inf\{|x - e| \mid e \in E\}.$$

Show that D is a continuous function on \mathbb{R}^n .

Problem 3. Let (X, d) be a metric space such that d(x, y) < 1 for all $x, y \in X$ and let $f : X \longrightarrow \mathbb{R}$ be uniformly continuous. Does it follow that f must be bounded? Justify your answer with either a proof or a counterexample.

Problem 4. Let $\mathbb{R}^{2\times 2}$ denote the set of all 2×2 matrices with real coefficients. Make it a metric space by identifying $\mathbb{R}^{2\times 2}$ with \mathbb{R}^4 via

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv (a, b, c, d).$$

Let X denote the subset of all invertible 2×2 matrices. Is X connected? Prove your answer.

Problem 5.

- (a). If $B \subset \mathbb{R}^n$ is a bounded set and $f : B \longrightarrow \mathbb{R}$ is uniformly continuous, show that f(B) is bounded.
- (b). Give an example to show that this does not necessarily follow if f is merely continuous on B.

Problem 6. Does the following limit exist? Justify your answer.

$$\lim_{(x,y)\to(0,0)}\frac{x^2y^3}{x^4+y^4}.$$

Problem 7. Let $E \subset \mathbb{R}^n$ and $f : E \longrightarrow \mathbb{R}^m$. Give an example of a continuous function f and a Cauchy sequence $\{x_k\}_{k=1}^{\infty} \subset E$ for which $\{f(x_k\}_{k=1}^{\infty} \text{ is not a Cauchy sequence in } \mathbb{R}^m$.

Problem 8. Define $f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ and $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ by

$$f(x,y) = (\sin(y) - x, e^x - y)$$
 and $g(x,y) = (xy, x^2 + y^2).$

Compute $(g \circ f)'(0, 0)$.

Problem 9. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Show that f is not differentiable at (0,0).

Problem 10. Let $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Then show that the partial derivatives exist at (0,0) but are discontinuous there.