Math 316 Practice Exam 1

Problem 1. Prove that $x_{n} \rightarrow x$ implies $x_{n}^{2} \rightarrow x^{2}$
Problem 2. Let $E \subset \mathbb{R}^{n}$ be nonempty. For $x \in \mathbb{R}^{n}$, define

$$
D(x)=\inf \{|x-e| \mid e \in E\} .
$$

Show that D is a continuous function on \mathbb{R}^{n}.
Problem 3. Let (X, d) be a metric space such that $d(x, y)<1$ for all $x, y \in$ X and let $f: X \longrightarrow \mathbb{R}$ be uniformly continuous. Does it follow that f must be bounded? Justify your answer with either a proof or a counterexample.

Problem 4. Let $\mathbb{R}^{2 \times 2}$ denote the set of all 2×2 matrices with real coefficients. Make it a metric space by identifying $\mathbb{R}^{2 \times 2}$ with \mathbb{R}^{4} via

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv(a, b, c, d)
$$

Let X denote the subset of all invertible 2×2 matrices. Is X connected? Prove your answer.

Problem 5.

(a). If $B \subset \mathbb{R}^{n}$ is a bounded set and $f: B \longrightarrow \mathbb{R}$ is uniformly continuous, show that $f(B)$ is bounded.
(b). Give an example to show that this does not necessarily follow if f is merely continuous on B.

Problem 6. Does the following limit exist? Justify your answer.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{3}}{x^{4}+y^{4}}
$$

Problem 7. Let $E \subset \mathbb{R}^{n}$ and $f: E \longrightarrow \mathbb{R}^{m}$. Give an example of a continuous function f and a Cauchy sequence $\left\{x_{k}\right\}_{k=1}^{\infty} \subset E$ for which $\left\{f\left(x_{k}\right\}_{k=1}^{\infty}\right.$ is not a Cauchy sequence in \mathbb{R}^{m}.
Problem 8. Define $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ by

$$
f(x, y)=\left(\sin (y)-x, e^{x}-y\right) \quad \text { and } \quad g(x, y)=\left(x y, x^{2}+y^{2}\right)
$$

Compute $(g \circ f)^{\prime}(0,0)$.

Problem 9. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x^{3}+y^{3}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is not differentiable at $(0,0)$.
Problem 10. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Then show that the partial derivatives exist at $(0,0)$ but are discontinuous there.

