Math 316 Hwk 1

Problem 1. Assume that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ spans the vector space V, and let \mathbf{v} be any other vector in V. Show that $\left\{\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is linearly dependent.

Problem 2. Let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ be linearly independent vectors in \mathbb{R}^{n}, and let A be a nonsingular $n \times n$ matrix. Define $\mathbf{y}_{i}=A \mathbf{x}_{i}$ for $i=1, \ldots, k$. Show that $\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{k}$ are linearly independent

Problem 3. Let X be a subspace of W and $L: V \longrightarrow W$ be a linear transformation. The preimage of X, denoted $L^{-1}(X)$, is defined by

$$
L^{-1}(X)=\{\mathbf{v} \in V \mid L(\mathbf{v}) \in X\}
$$

Prove that $L^{-1}(X)$ is a subspace of V.
Problem 4. Prove that the ℓ^{p} norms satisfy the following inequalities:
(a). $\|\mathbf{x}\|_{2} \leq\|\mathbf{x}\|_{1} \leq \sqrt{n}\|\mathbf{x}\|_{2}$.
(b). $\|\mathbf{x}\|_{\infty} \leq\|\mathbf{x}\|_{2} \leq \sqrt{n}\|\mathbf{x}\|_{\infty}$.

Hint: Use the Cauchy-Schwarz inequality.
Problem 5. Let $d(\mathbf{x}, \mathbf{y})$ be a metric on a vector space V. Show that

$$
\rho(\mathbf{x}, \mathbf{y})=\frac{d(\mathbf{x}, \mathbf{y})}{1+d(\mathbf{x}, \mathbf{y})}
$$

is also a metric.
Problem 6. Let V, W, X be vector spaces. Assume that $L: V \longrightarrow W$ and $M: W \longrightarrow X$ are linear transformations. Prove that $M \circ L: V \longrightarrow X$ is a linear transformation.

Problem 7. A set $C \subset \mathbb{R}^{n}$ is convex if for each $\mathbf{x}, \mathbf{y} \in C$, we have that $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in C$, whenever $0 \leq \lambda \leq 1$.
(a). Give the geometric interpretation of a convex set.
(b). Provide an example of a set that is convex and one that isn't.

Problem 8. The convex hull of $S \subset \mathbb{R}^{n}$, denoted $\operatorname{co}(S)$ is the set of all convex combinations of elements of S, that is, the set of all linear combinations

$$
a_{1} \mathbf{x}_{1}+\cdots+a_{n} \mathbf{x}_{n}
$$

such that $a_{1}+\cdots+a_{n}=1$, each $a_{j} \geq 0$, and each $\mathbf{x}_{j} \in S, j=1, \ldots, n$, $n \in \mathbb{N}$. Prove that a convex set C contains every convex combination of its elements, or in other words $c o(C) \subset C$.

Problem 9. Let $\left\{C_{\alpha}\right\}_{\alpha \in J}$ be a collection of convex sets for some indexing set J. Prove that $\cap_{\alpha \in J} C_{\alpha}$ is convex.

Problem 10. Let $S \subset \mathbb{R}^{n}$. Prove that $\operatorname{co}(S)$ is equal to the intersection of all convex sets containing S.

