Math 316 Hwk 1

Problem 1. Assume that $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans the vector space V, and let \mathbf{v} be any other vector in V. Show that $\{\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly dependent.

Problem 2. Let $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k$ be linearly independent vectors in \mathbb{R}^n , and let A be a nonsingular $n \times n$ matrix. Define $\mathbf{y}_i = A\mathbf{x}_i$ for $i = 1, \ldots, k$. Show that $\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_k$ are linearly independent

Problem 3. Let X be a subspace of W and $L : V \longrightarrow W$ be a linear transformation. The preimage of X, denoted $L^{-1}(X)$, is defined by

$$L^{-1}(X) = \{ \mathbf{v} \in V \mid L(\mathbf{v}) \in X \}.$$

Prove that $L^{-1}(X)$ is a subspace of V.

Problem 4. Prove that the ℓ^p norms satisfy the following inequalities:

- (a). $\|\mathbf{x}\|_2 \le \|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$.
- (b). $\|\mathbf{x}\|_{\infty} \leq \|\mathbf{x}\|_{2} \leq \sqrt{n} \|\mathbf{x}\|_{\infty}$.

Hint: Use the Cauchy-Schwarz inequality.

Problem 5. Let $d(\mathbf{x}, \mathbf{y})$ be a metric on a vector space V. Show that

$$\rho(\mathbf{x}, \mathbf{y}) = \frac{d(\mathbf{x}, \mathbf{y})}{1 + d(\mathbf{x}, \mathbf{y})}$$

is also a metric.

Problem 6. Let V, W, X be vector spaces. Assume that $L : V \longrightarrow W$ and $M : W \longrightarrow X$ are linear transformations. Prove that $M \circ L : V \longrightarrow X$ is a linear transformation.

Problem 7. A set $C \subset \mathbb{R}^n$ is convex if for each $\mathbf{x}, \mathbf{y} \in C$, we have that $\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in C$, whenever $0 \le \lambda \le 1$.

- (a). Give the geometric interpretation of a convex set.
- (b). Provide an example of a set that is convex and one that isn't.

Problem 8. The convex hull of $S \subset \mathbb{R}^n$, denoted co(S) is the set of all convex combinations of elements of S, that is, the set of all linear combinations

$$a_1\mathbf{x}_1 + \cdots + a_n\mathbf{x}_n$$

such that $a_1 + \cdots + a_n = 1$, each $a_j \ge 0$, and each $\mathbf{x}_j \in S$, $j = 1, \ldots, n$, $n \in \mathbb{N}$. Prove that a convex set C contains every convex combination of its elements, or in other words $co(C) \subset C$.

Problem 9. Let $\{C_{\alpha}\}_{\alpha \in J}$ be a collection of convex sets for some indexing set J. Prove that $\bigcap_{\alpha \in J} C_{\alpha}$ is convex.

Problem 10. Let $S \subset \mathbb{R}^n$. Prove that co(S) is equal to the intersection of all convex sets containing S.