Math 316 Hwk 3

Problem 1. If $U \subset \mathbb{R}^n$ is open and $K \subset U$ is compact, prove that there is a compact set D such that $K \subset D^\circ$ and $D \subset U$.

Problem 2. Recall that a homeomorphism is bijective, continuous, and has a continuous inverse. Prove that there is no homeomorphism from \mathbb{R}^2 onto \mathbb{R} . HINT: Remove a point from each and consider a connectedness argument.

Problem 3. If f, g are continuous on the Euclidian spaces \mathbb{R}^m into \mathbb{R} , prove that f + g and $f \cdot g$ are continuous.

Problem 4. A hyperplane is a set of the form $\{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{a}^T \mathbf{x} = b\}$, where $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{a} \neq \mathbf{0}$, and $b \in \mathbb{R}$. Prove that a hyperplane is convex.

Problem 5. What is the distance between two parallel hyperplanes. Use the Euclidian metric in \mathbb{R}^n .

Problem 6. A halfspace is a set of the form $\{\mathbf{x} \in \mathbb{R}^m \mid \mathbf{a}^T \mathbf{x} \leq b\}$, where $\mathbf{a} \in \mathbb{R}^m$, $\mathbf{a} \neq \mathbf{0}$, and $b \in \mathbb{R}$. Prove that a halfspace is convex.

Problem 7. Under what conditions does one halfspace contain another? Use the Euclidian metric in \mathbb{R}^n .

Problem 8. We know that \mathbb{R} is complete. Use this to show that \mathbb{R}^n is complete in the Euclidian norm.

Problem 9. Prove carefully the following: If a Cauchy sequence $\{\mathbf{x}_k\}_{k=1}^{\infty}$ has a cluster point $\mathbf{x} \in X$, then it converges to \mathbf{x} .

Problem 10. If $\{\mathbf{x}_k\}_{k=1}^{\infty}$ and $\{\mathbf{y}_k\}_{k=1}^{\infty}$ are Cauchy sequences in (X, d), then $d(\mathbf{x}_n, \mathbf{y}_n)$ converges. Note that X may not be complete.