Math 316 Hwk 4

Problem 1. Prove the following: If $f : [a, b] \longrightarrow [a, b]$ is continuous, then there exists $x \in [a, b]$ such that f(x) = x.

Problem 2. A set $E \subset \mathbb{R}^n$ is said to be path connected if for any $\mathbf{x}, \mathbf{y} \in E$ there is a continuous map $\gamma : [0, 1] \longrightarrow \mathbb{R}^n$ such that $\gamma([0, 1]) \subset E$, $\gamma(0) = \mathbf{x}$ and $\gamma(1) = \mathbf{y}$. Prove that a path connected space is connected.

Problem 3. Let

$$f(x,y) = \begin{cases} 0 & x = y = 0\\ \frac{2x^2y}{x^4 + y^2} & otherwise \end{cases}$$

Define $\phi(t) = (t, at)$ and $\psi(t) = (t, t^2)$. Show that:

- (a). $\lim_{t\to 0} f(\phi(t)) = 0.$
- (b). $\lim_{t\to 0} f(\psi(t)) = 1.$

What does this mean? Explain your results.

Problem 4. A function $f : \mathbb{R} \longrightarrow \mathbb{R}$ is called periodic, if there exists a number T > 0 such that f(x + T) = f(x) for all $x \in \mathbb{R}$. Show that a continuous periodic function is bounded an uniformly continuous on \mathbb{R} .

Problem 5. Show that the function $f(x) = (x+1)^{-1}$ is uniformly continuous on the interval $(0, \infty)$, but not on the interval (-1, 0).

Problem 6. Determine if the limit of f(x, y) exists at (0, 0) for

(a).
$$f(x, y) = \frac{\sqrt{xy}}{x^2 + y^2}$$
.
(b) $f(x, y) = \frac{xy}{x^2 + y^2}$

$$\begin{array}{c} (z) \cdot y (z, y) \\ x^2 + y^2 \end{array}$$

(c).
$$f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$$

Definition. Let $f : \mathbb{R}^m \longrightarrow \mathbb{R}^n$. We have the following sets:

- (a). The domain, $\mathcal{D}(f) = \{\mathbf{x} \in \mathbb{R}^m \mid f(x) \text{ exists}\}.$
- (b). The range, $\mathcal{R}(f) = \{ \mathbf{y} \in \mathbb{R}^n \mid f(\mathbf{x}) = \mathbf{y} \text{ for some } \mathbf{x} \in \mathcal{D}(f) \}.$
- (c). The graph, $\mathcal{G}(f) = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^m \times \mathbb{R}^n \mid \mathbf{x} \in \mathcal{D}(f) \text{ and } f(\mathbf{x}) = \mathbf{y}\}.$
- (d). The level set of f at \mathbf{b} , $f^{-1}(\mathbf{b}) = {\mathbf{x} \in \mathbb{R}^m \mid f(\mathbf{x}) = \mathbf{b}}.$

Problem 7. Sketch the domain, range, graph, and level sets of the function $f(x, y) = \frac{1}{xy}$.

Problem 8. Sketch the following:

- (a). The range and graph of $f(t) = (\cos t, \sin t)$.
- (b). The range of $f(r, \theta) = (r \cos \theta, r \sin \theta, r), \ 0 \le r \le 1$ and $0 \le \theta \le 2\pi$.
- (c). The level set of $f(x, y, z) = (x + y + z, x^2 + y^2 + z^2)$ at (1, 1).
- (d). The range of $f(\theta, \phi) = (\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi), \ -\frac{\pi}{2} \le \phi \le \frac{\pi}{2}$ and $0 \le \theta \le 2\pi$.

Problem 9. Let $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$. Find:

- (a). A function whose range is the graph of f.
- (b). A function whose level set at $\mathbf{0}$ is the graph of f.

Problem 10. Find the following:

- (a). A function $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ so that g(f(x, y)) = (x, y), where the function f is defined by f(x, y) = (3x + 2y, x y).
- (b). For the function $F : \mathbb{R}^4 \longrightarrow \mathbb{R}^2$ defined by

$$F(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 + x_4, 2x_1 - 3x_2 + x_3 + 4x_4),$$

let S be the level set of F at (1, -1). Find (i) a function whose range is S and (ii) a function whose graph is S.