Math 316 Hwk 4

Problem 1. Prove the following: If $f:[a, b] \longrightarrow[a, b]$ is continuous, then there exists $x \in[a, b]$ such that $f(x)=x$.

Problem 2. A set $E \subset \mathbb{R}^{n}$ is said to be path connected if for any $\mathbf{x}, \mathbf{y} \in E$ there is a continuous map $\gamma:[0,1] \longrightarrow \mathbb{R}^{n}$ such that $\gamma([0,1]) \subset E, \gamma(0)=\mathbf{x}$ and $\gamma(1)=\mathbf{y}$. Prove that a path connected space is connected.

Problem 3. Let

$$
f(x, y)= \begin{cases}0 & x=y=0 \\ \frac{2 x^{2} y}{x^{4}+y^{2}} & \text { otherwise }\end{cases}
$$

Define $\phi(t)=(t$, at $)$ and $\psi(t)=\left(t, t^{2}\right)$. Show that:
(a). $\lim _{t \rightarrow 0} f(\phi(t))=0$.
(b). $\lim _{t \rightarrow 0} f(\psi(t))=1$.

What does this mean? Explain your results.
Problem 4. A function $f: \mathbb{R} \longrightarrow \mathbb{R}$ is called periodic, if there exists a number $T>0$ such that $f(x+T)=f(x)$ for all $x \in \mathbb{R}$. Show that a continuous periodic function is bounded an uniformly continuous on \mathbb{R}.

Problem 5. Show that the function $f(x)=(x+1)^{-1}$ is uniformly continuous on the interval $(0, \infty)$, but not on the interval $(-1,0)$.

Problem 6. Determine if the limit of $f(x, y)$ exists at $(0,0)$ for
(a). $f(x, y)=\frac{\sqrt{x y}}{x^{2}+y^{2}}$.
(b). $f(x, y)=\frac{x y}{x^{2}+y^{2}}$.
(c). $f(x, y)=\frac{x y}{\sqrt{x^{2}+y^{2}}}$.

Definition. Let $f: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$. We have the following sets:
(a). The domain, $\mathcal{D}(f)=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid f(x)\right.$ exists $\}$.
(b). The range, $\mathcal{R}(f)=\left\{\mathbf{y} \in \mathbb{R}^{n} \mid f(\mathbf{x})=\mathbf{y}\right.$ for some $\left.\mathbf{x} \in \mathcal{D}(f)\right\}$.
(c). The graph, $\mathcal{G}(f)=\left\{(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{m} \times \mathbb{R}^{n} \mid \mathbf{x} \in \mathcal{D}(f)\right.$ and $\left.f(\mathbf{x})=\mathbf{y}\right\}$.
(d). The level set of f at $\mathbf{b}, f^{-1}(\mathbf{b})=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid f(\mathbf{x})=\mathbf{b}\right\}$.

Problem 7. Sketch the domain, range, graph, and level sets of the function $f(x, y)=\frac{1}{x y}$.
Problem 8. Sketch the following:
(a). The range and graph of $f(t)=(\cos t, \sin t)$.
(b). The range of $f(r, \theta)=(r \cos \theta, r \sin \theta, r), 0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$.
(c). The level set of $f(x, y, z)=\left(x+y+z, x^{2}+y^{2}+z^{2}\right)$ at $(1,1)$.
(d). The range of $f(\theta, \phi)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi),-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}$ and $0 \leq \theta \leq 2 \pi$.

Problem 9. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$. Find:
(a). A function whose range is the graph of f.
(b). A function whose level set at $\mathbf{0}$ is the graph of f.

Problem 10. Find the following:
(a). A function $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ so that $g(f(x, y))=(x, y)$, where the function f is defined by $f(x, y)=(3 x+2 y, x-y)$.
(b). For the function $F: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{2}$ defined by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}+x_{3}+x_{4}, 2 x_{1}-3 x_{2}+x_{3}+4 x_{4}\right)
$$

let S be the level set of F at $(1,-1)$. Find (i) a function whose range is S and (ii) a function whose graph is S.

