Math 316 Hwk 5

Problem 1. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ satisfy $f(x, y)=x y e^{x+y}$.
(a). Find the directional derivative of f in the direction $\mathbf{u}=\left(\frac{3}{5}, \frac{4}{5}\right)$ at the point $(1,-1)$.
(b). Find the direction in which f is increasing the fastest at $(1,-1)$.

Problem 2. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is not differentiable at $(0,0)$, but that both partial derivatives exist there.
Problem 3. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x|y|}{\sqrt{x^{2}+y^{2}}} & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f has a directional derivative in every direction at $(0,0)$, but is not differentiable there.
Problem 4. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$. Then show that the partial derivatives are bounded near $(0,0)$, but are discontinuous there.
Problem 5. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Show that f is differentiable at $(0,0)$, but has unbounded partial derivatives near (0,0).

Problem 6. Let $A \subset \mathbb{R}^{2}$ be an open set and $f: A \longrightarrow \mathbb{R}$. If the partial derivatives of f exist and are bounded on A, then prove that f is continuous on A.

Problem 7. Let $A \subset \mathbb{R}^{2}$ be an open connected set and $f: A \longrightarrow \mathbb{R}$. If for each $a \in A$, we have $D_{1} f(a)=D_{2} f(a)=0$, prove that f is constant on A.

Problem 8. Let $\gamma(t)$ be a smooth curve in \mathbb{R}^{3}. If for some smooth functional $F: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, we have $F(\gamma(t))=C$, show that $D F(\gamma(t))^{T}$ is orthogonal to the tangent vector $\gamma^{\prime}(t)$.

Problem 9. Let $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ be given by

$$
f(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|_{2}^{2}
$$

where A is an $n \times n$ matrix and $\mathbf{b} \in \mathbb{R}^{n}$. Find $D f\left(\mathbf{x}_{0}\right)$.
Problem 10. Let $u: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be twice continuously differentiable. If $x=r \cos \theta$ and $y=r \sin \theta$, show that the Laplacian takes the form

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

