Math 316 Hwk 8

Problem 1. Minimize $x_1^2 + 2x_1x_2 + 3x_2^2 + 4x_1 + 5x_2 + 6x_3$ subject to the constraints $x_1 + 2x_2 = 3$ and $4x_1 + 5x_3 = 6$.

Problem 2. Maximize $4x_1 + x_2^2$ subject to the constraint $x_1^2 + x_2^2 = 9$.

Problem 3. Find all solutions to the problem: Maximize $\mathbf{x}^T A \mathbf{x}$ subject to $\|\mathbf{x}\|^2 = 1$, when

$$A = \begin{bmatrix} 3 & 4 \\ 0 & 3 \end{bmatrix}.$$

Problem 4. Minimize $f(\mathbf{x})$ subject to $C\mathbf{x} = \mathbf{d}$ where

$$f(\mathbf{x}) = \frac{1}{2} \|A\mathbf{x} - \mathbf{b}\|^2,$$

 $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{p \times n}$ are both of full rank, m > n and p < n.

Problem 5. Suppose that \mathbf{x}^* is the minimum of the function $f(\mathbf{x})$ subject to the constraint $h(\mathbf{x}) = 0$, where f and h are maps from \mathbb{R}^2 into \mathbb{R} . If for $\mathbf{x} = (x_1, x_2)$ we have $Df(\mathbf{x}) = \begin{bmatrix} x_1 & x_1 + 4 \end{bmatrix}$ and $Dh(\mathbf{x}^*) = \begin{bmatrix} 1 & 4 \end{bmatrix}$, find $Df(\mathbf{x}^*)$.