Math 411 Hwk 3

Problem 1. Write a Matlab function intVandermonde, which takes as input the interpolation points $\{(\hat{x}_k, \hat{y}_k)\}_{k=0}^n$ and the sample points $\{x_j\}_{j=1}^m$, and uses the Vandermonde interpolation method to return the values $\{y_j\}_{j=1}^m$ so that $y_j = p(x_j)$ for each $j = 1, \ldots, m$, where p(x) is the unique interpolating polynomial.

Problem 2. Write a Matlab function intLagrangian, which takes as input the interpolation points $\{(\hat{x}_k, \hat{y}_k)\}_{k=0}^n$ and the sample points $\{x_j\}_{j=1}^m$, and uses the Lagrangian interpolation method to return the values $\{y_j\}_{j=1}^m$ so that $y_j = p(x_j)$ for each $j = 1, \ldots, m$, where p(x) is the unique interpolating polynomial.

Problem 3. Write a Matlab function intNewton, which takes as input the interpolation points $\{(\hat{x}_k, \hat{y}_k)\}_{k=0}^n$ and the sample points $\{x_j\}_{j=1}^m$, and uses the Newton interpolation method to return the values $\{y_j\}_{j=1}^m$ so that $y_j = p(x_j)$ for each j = 1, ..., m, where p(x) is the unique interpolating polynomial.

Problem 4. Compare the run times of the above three functions by writing a Matlab script that interpolates the randomly generated sequence $\{(k, y_k)\}_{k=1}^n$. Make a formal study and report your conclusions.