Math 411 Hwk 4

Problem 1. Write a Matlab function myspline, which takes as input the knots $\left\{\left(t_{j}, z_{j}\right)\right\}_{j=0}^{n}$, which are also interpolation points, and the sample points $\left\{x_{k}\right\}_{k=1}^{m}$, and uses the cubic spline interpolation method to return the values $\left\{y_{k}\right\}_{k=1}^{m}$ so that $y_{k}=s\left(x_{k}\right)$ for each $k=1, \ldots, m$, where $s(x)$ is the cubic spline subject to the given boundary conditions. Your function should be able to handle "natural" (default), "clamped", and "not-a-knot" options. If derivative values are not given as input in the "clamped" case, have them default to zero. Be sure also to include well-written and complete documentation in your code so that a user will be able to know how to execute your code by typing help myspline. Below is an example:

```
>> help myspline
    Returns the values of a cubic spline with knots (t,z) at
    the sample points x. Boundary condition options are
        'natural' - natural splines
        'clamped' - clamped splines with end point
        derivatives at f(1) and f(2)
    'not-a-knot' - not a knot splines
    Usage:
    myspline(t,z,x); % defaults to natural
    myspline(t,z,x,'natural'); % same as above
    myspline(t,z,x,'clamped'); % zero default derivative
    myspline(t,z,x,'clamped',[4 5]);
    myspline(t,z,x,'not-a-knot');
```

