Math 411 Hwk 4

Problem 1. Write a Matlab function myspline, which takes as input the knots $\{(t_j, z_j)\}_{j=0}^n$, which are also interpolation points, and the sample points $\{x_k\}_{k=1}^m$, and uses the cubic spline interpolation method to return the values $\{y_k\}_{k=1}^m$ so that $y_k = s(x_k)$ for each k = 1, ..., m, where s(x) is the cubic spline subject to the given boundary conditions. Your function should be able to handle "natural" (default), "clamped", and "not-a-knot" options. If derivative values are not given as input in the "clamped" case, have them default to zero. Be sure also to include well-written and complete documentation in your code so that a user will be able to know how to execute your code by typing help myspline. Below is an example:

```
>> help myspline
```

```
Returns the values of a cubic spline with knots (t,z) at the sample points x. Boundary condition options are
```

'natural'	- natural splines
'clamped'	- clamped splines with end point
	derivatives at $f(1)$ and $f(2)$
'not-a-knot'	- not a knot splines

Usage:

```
myspline(t,z,x);  % defaults to natural
myspline(t,z,x,'natural');  % same as above
myspline(t,z,x,'clamped');  % zero default derivative
myspline(t,z,x,'not-a-knot');
```