
Definition 1. A function f(x) is said to interpolate the set of points
{(xj, yj)}n

j=0 if f(xj) = yj, for all j = 0, . . . , n.

1. Polynomial Interpolation

Theorem 2. Given the set {(xj, yj)}n
j=0, where each xj is distinct,

there exists a unique interpolating polynomial p(x) of degree at most n.

Proof. Define the family of n-degree polynomials

(1) Ln,j(x) =
n∏

k=0
k 6=j

x− xk

xj − xk

.

Note that Ln,j(xk) = δjk. Hence, the linear combination

(2) p(x) =
n∑

j=0

yjLn,j(x)

is an interpolating polynomial for the given set. To prove uniqueness,
suppose there exists another interpolating polynomial q(x) of degree at
most n. Then the polynomial p(x)− q(x) is of degree at most n, yet it
has n + 1 roots at {xi}n

i=0. This is a contradiction. �

The functions defined in (??) are called Lagrange basis functions, and
the process outlined in the proof is called Lagrange interpolation. It
is an important method for the theoretical development of polynomial
interpolation theory, however, is is generally not a good method for
computation. Another problem with lagrange interpolation is that it
is not easy to add additional points after computing the interpolating
polynomial.

Another way to interpolate is to solve the linear system
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n




a0

a1
...

an

 =


y0

y1
...

yn


The (n + 1) × (n + 1) matrix is called the Vandermonde matrix and
is provably nonsingular, however, it is also often ill-conditioned. Thus,
this approach is likewise not suitable for computation.

The following iterative method of Newton interpolation is computa-
tionally practical and it allows for additional points to be added after
the fact.
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Theorem 3. Let pn−1(x) be the unique polynomial of degree at most
n− 1 that interpolates the set {(xj, yj)}n−1

i=0 and let pn(x) be the unique
polynomial of degree at most n that interpolates the set {(xj, yj)}n

i=0.
Then pn(x) is given by

(3) pn(x) = pn−1(x) + anwn(x),

where

(4) wn(x) :=
n−1∏
j=0

(x− xj)

and

(5) an =
yn − pn−1(xn)

wn(xn)
.

Proof. Note that pn(x)− pn−1(x) equals some scalar multiple of wn(x).
Indeed it is a polynomial of degree at most n with all the same zeros
as wn(x). Evaluating (??) at the point xn yields (??). �

Corollary 4. For {aj}n
j=0 and wj(x) defined iteratively, as above, we

have

(6) pn(x) =
n∑

j=0

ajwj(x),

where w0(x) ≡ 1 and a0 = y0.

The Corollary introduces an algorithm called divided differences that
will allow for fast computation. Let

f [x0, x1, . . . , xk] = ak

for each k = 0, . . . , n. We have the following:

Proposition 5.

(7) f [x0, . . . , xk] =
f [x1, . . . , xk]− f [x0, . . . , xk−1]

xk − x0

Proof. For each k, let pk(x) denote the unique polynomial of degree at
most k that interpolates f(x) at {xj}k

j=0. Now let P (x) be the unique

polynomial of degree at most k − 1 that interpolates f(x) at {xj}k
j=1.

Then we have

pk(x) = P (x) +
x− xk

xk − x0

(P (x)− pk−1(x)).

By matching the kth-order terms, we have (??). �
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2. Cubic Spline

Definition 6. A spline of degree k with knots {t0, . . . , tn} is a function
s(x) that satisfies the following two properties:

(i). On the interval [tj, tj+1), s(x) is a polynomial of degree at most
k, that is, s(x) is a polynomial on every subinterval defined by
the knots.

(ii). The function s(x) has a continuous (k−1)th derivative at each
knot.

For example, consider the cubic spline s(x), which takes the form

(8) s(x) =


s0(x) x ∈ [t0, t1)

s1(x) x ∈ [t1, t2)
...

sn−1(x) x ∈ [tn−1, tn],

where

sj(x) = aj + bj(x− xj) + cj(x− xj)
2 + dj(x− xj)

3.

and

(i). sj(tj+1) = sj+1(tj+1) = aj+1

(ii). s′j(tj+1) = s′j+1(tj+1) = bj+1

(iii). s′′j (tj+1) = s′′j+1(tj+1) = 2cj+1

Let hj = tj+1 − tj, and assume that the knots are interpolation points
{(xj, yj)}n

j=0. We can solve everything in terms of yj and xj. Note that
(i)–(iii) reduce to:

yj+1 = yj + bjhj + cjh
2
j + djh

3
j

bj+1 = bj + 2cjhj + 3djh
2
j

2cj+1 = 2cj + 6djhj

Solving for dj we have

dj =
cj+1 − cj

3hj

.

Then we can reduce to two equations

bjhj +
cj+1 + 2cj

3
h2

j = yj+1 − yj

(cj+1 + cj)hj = bj+1 − bj.

Solving for bj we have

bj =
yj+1 − yj

hj

− cj+1 + 2cj

3
hj,
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which we can use to reduce to one equation

hj+1cj+2 + 2(hj+1 + hj)cj+1 + hjcj = ∆j+1,

where j = 0, 1, . . . , n− 2 and

∆j+1 = 3

(
yj+2 − yj+1

hj+1

− yj+1 − yj

hj

)
.

Write as a linear system2666666666666664

∗ ∗ ∗ · · · ∗ ∗
h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

. . .
. . .

. . .

hn−2 2(hn−2 + hn−1) hn−1

∗ ∗ · · · ∗ ∗ ∗

3777777777777775

2666666666666664

c0
c1
c2
c3

..

.

cn−1

cn

3777777777777775
=

2666666666666664

∆0

∆1

∆2

∆3

...

∆n−1

∆n

3777777777777775
,

where the top and bottom rows are yet to be determined and depend
on the boundary conditions at t0 and tn.

The most common boundary conditions are:

Natural: Assume s′′(x0) = s′′(xn) = 0 or c0 = cn = 0. Hence
set ∆0 = ∆n = 0 and the top row to be all zeros except the
first entry, which is a one, and the last row to be all zeros,
except the last entry, which is also a one.

Clamped: s′(x0) = α and s′(xn) = β. Hence set

2h0c0 + h0c1 =
3

h0

(y1 − y0)− 3α

and

hn−1cn−1 + 2hn−1cn = 3β − 3

hn−1

(yn − yn−1).

Not a Knot: Assume s′′′0 (x1) = s′′′1 (x1) or equivalently d0 = d1

and s′′′n−2(xn−1) = s′′′n−1(xn−1) or equivalently dn−2 = dn−1.
Hence,

h1c0 − (h0 + h1)c1 + h0c2 = 0

and

hn−1cn−2 − (hn−2 + hn−1)cn−1 + hn−2cn = 0.
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3. Bernstein Polynomials

In 1912, Bernstein proved that the sequence of polynomials

fm(t) =
m∑

i=0

f(i/n)

(
m

i

)
ti(1− t)m−i

converges uniformly to the function f(x) ∈ C[0, 1], thus providing a
nice proof of the Weierstrass Approximation Theorem.

Definition 7. The Bernstein polynomials take the form

Bm
i (t) =

(
m

i

)
ti(1− t)m−i.

Theorem 8.

(9) Bm
j (t) =

m∑
i=j

(−1)i−j

(
m

i

)(
i

j

)
ti.

Thus, we have the matrix representation

[
Bm

0 Bm
1 · · · Bm

m

]
=

[
1 t · · · tm

]
µ00 0 · · · 0
µ10 µ11 · · · 0
...

...
. . .

...
µm0 µm1 · · · µmm


where

µij = (−1)i−j

(
m

i

)(
i

j

)
.

Proof.

Bm
j (t) =

(
m

j

)
tj(1− t)m−j

=

(
m

j

)
tj

m−j∑
i=0

(
m− j

i

)
(−1)iti

=

m−j∑
i=0

(−1)i

(
m

j

)(
m− j

i

)
ti+j

=
m∑

i=j

(−1)i−j

(
m

j

)(
m− j

i− j

)
ti

=
m∑

i=j

(−1)i−j

(
m

i

)(
i

j

)
ti

�
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Example 9. The following equality provides the transition from the
power basis into the Bernstein basis for R3[x].

[
B3

0 B3
1 B3

2 B3
3

]
=

[
1 t t2 t3

]
1 0 0 0

−3 3 0 0
3 −6 3 0

−1 3 −3 1


Theorem 10. {Bm

i (t)}m
i=0 is a basis for Rm[x].

Lemma 11. The following hold:

(i). Bm
i (t) ≥ 0 on the interval [0, 1].

(ii). The set {Bm
i (t)}m

i=0 forms a partition of unity, that is, satisfies

m∑
i=0

Bm
i (t) = 1.

Theorem 12. Any set {Bm
i (t)}m

i=0 that is a partition of unity has the
property that any linear combination

∑m
i=0 PiB

m
i (t) is in the convex

hull of {Pi}m
i=0, denoted co({Pi}m

i=0).

Theorem 13. The Bernstein polynomials can be recursively defined as
follows:

Bn
k (t) = (1− t)Bn−1

k (t) + tBn−1
k−1 (t)

Bn
k (t) = 0 (if k < 0 or k > n)

B0
0(t) = 1.

Proof.

(1− t)Bn−1
k + tBn−1

k−1 =

(
n− 1

k

)
tk(1− t)n−k +

(
n− 1

k − 1

)
tk(1− t)n−k

=

[(
n− 1

k

)
+

(
n− 1

k − 1

)]
tk(1− t)n−k

=

[
(n− 1)!(n− k)

k!(n− k)!
+

(n− 1)!k

k!(n− k)!

]
tk(1− t)n−k

=
n!

k!(n− k)!
tk(1− t)n−k.

�
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4. Bezier Curves

Definition 14. Given control points {Pi}m
i=0, we define the correspond-

ing Bezier curve

P (t) =
m∑

i=0

PiB
m
i (t).

Proposition 15. The Bezier curve R(t) is uniquely determined by its
control points.

Proposition 16. R([0, 1]) ⊂ co({Pi}m
i=0)

Lemma 17.

dk

dtk
Bm

i (t) = (−1)k m!

(m− k)!
δk
−Bm−k

i (t).

Proof. This follows straightforwardly from the case k = 1. Note that

d

dt
Bm

i (t) =
d

dt

[(
m

i

)
ti(1− t)m−i

]
= m

(
m− 1

i− 1

)
ti−1(1− t)m−i −m

(
m− 1

i

)
ti(1− t)m−i−1

= m[Bm−1
i−1 (t)−Bm−1

i (t)]

= −mδ−Bm−1
i (t).

�

Theorem 18.

dk

dtk
P (t) =

m!

(m− k)!

m−k∑
i=0

(δk
+Pi)B

m−k
i (t).

Lemma 19. A degree m Bernstein polynomial can be expressed as a
linear combination of degree m + 1 Bernstein polynomials. Indeed, we
have the following recursion relation

(10) Bm
i (t) =

i + 1

m + 1
Bm+1

i+1 (t) +
m + 1− i

m + 1
Bm+1

i (t).

Proof. Note that

tBm
i (t) =

(
m

i

)
ti+1(1− t)m−i =

(
m
i

)(
m+1
i+1

)Bm+1
i+1 (t) =

i + 1

m + 1
Bm+1

i+1 (t)

and

(1−t)Bm
i (t) =

(
m

i

)
ti(1−t)m+1−i =

(
m
i

)(
m+1

i

)Bm+1
i (t) =

m + 1− i

m + 1
Bm+1

i (t).
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Thus

Bm
i (t) = tBm

i (t) + (1− t)Bm
i (t) =

i + 1

m + 1
Bm+1

i+1 (t) +
m + 1− i

m + 1
Bm+1

i (t).

�

Theorem 20. The Bezier curve P (t) =
∑m

i=0 PiB
m
i (t) of degree m can

be expressed as a Bezier curve P (t) =
∑m+1

i=0 QiB
m+1
i (t) of degree m+1

via the relationship
Q0 = P0

Qi =
i

m + 1
Pi−1 +

(
1− i

m + 1

)
Pi, i = 1, . . . ,m

Qm+1 = Pm.

Bezier curves are symmetric, which means that the curve is the same
if you reverse the order of the control points. Bezier curves are affine
invariant. Also the tangent vectors at the end points are given by the
segments P0P1 and PmPm−1, respectively.

5. Composite Bezier Curves

Let γ1(t) =
∑m

i=0 PiB
m
i (t) and γ2(t) =

∑n
j=0 QjB

n
j (t) be two Bezier

curves. The composite curve

γ(t) =

{
γ1(t) t ∈ [0, 1]

γ2(1− t) t ∈ [1, 2]

is called geometrically continuous, denoted G0, if γ1(1) = γ2(0). This
connection point at t = 1 is called a knot or a joint. In terms of Bezier
control points, this means that Pm = Q0. Note that a G0 composite
curve can have corners or cusps. Indeed all that is required is continuity
at t = 1.

By adding additional conditions on the control points, we can im-
prove the degree of smoothness of the resulting composite curve γ(t).
Specifically, we say that γ(t) is geometrically continuously differen-
tiable, denoted G1, if it is G0 and the tangent vectors of γ1 and γ2 at
the knot are in the same direction–specifically

γ1(1) = γ2(0) and
γ′

1(1)

‖γ′
1(1)‖

=
γ′

2(0)

‖γ′
2(0)‖

.

In terms of the control points, this means that both Pm = Q0 and
Pm − Pm−1 = c1(Q1 −Q0), where c1 = ‖Pm − Pm−1‖/‖Q1 −Q0‖. This
means that the control points Pm−1,Pm = Q0, and Q1 are colinear.

Geometric continuity is a weaker condition than parametric continu-
ity. For a curve to be parametrically C1, we would require that both
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the direction and magnitudes of the tangent vectors at the knot be the
same.

It is sometimes necessary for a composite curve to have continuous
curvature. Such curves are said to be geometrically twice differentiable,
denoted G2, if they are G1 and γ′′

1 (1) = c2γ
′
2(0) + c2

1γ
′′
2 (0). In terms of

the control points, this last condition reduces to

Pm − 2Pm−1 + Pm−2 =
c2

m− 1
(Q1 −Q0) + c2

1(Q0 − 2Q1 + Q2).

6. Difference Equations

Definition 21. Given the sequence {yn}m
n=0, we define the difference

operators

δ+yn = yn+1 − yn

δ−yn = yn − yn−1

and the shift operators

E+yn = yn+1

E−yn = yn−1.

Remark. Note that E± = I ± δ± and δ± = ±(E − I).

Lemma 22.

(i). δm
± = ±

∑m
k=0

(
m
k

)
Ek
±.

(ii). Em
± =

∑m
k=0

(
m
k

)
(−1)kδk

±.

Lemma 23.

(i). δk
±(δm

± yn) = δm+k
± yn

(ii). δ±(yn + zn) = δ±yn + δ±zn

(iii). δ±(ayn) = aδ±yn

(iv). δ±(ynzn) = (δ±yn)(E±zn) + yn(δ±zn).
(v).

δ±

(
yn

zn

)
=

(δ±yn)zn − yn(δ±zn)

znE±zn

.

Lemma 24 (Fundumental Theorem).

n∑
i=m

δ±(yizi) =

{
yn+1zn+1 − ymzm

ynzn − ym−1zm−1
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Theorem 25 (Summation by Parts).
n∑

i=m

yi(δ+zi) = yn+1zn+1 − ymzm −
n∑

i=m

(δ+zi)E+zi.(11)

n∑
i=m

yi(δ−zi) = ynzn − ym−1zm−1 −
n∑

i=m

(δ−zi)E−zi.(12)

Proof. By summing the product rule and applying the Fundumental
Theorem, we have

n∑
i=m

yi(δ±zi) =
n∑

i=m

δ±(yizi)−
n∑

i=m

(δ±yi)(E±zi)

�


