Math 635 Hwk 3

Problem 1. Determine the power P that must be applied to keep a ship of length l moving at a constant speed s. Assume P depends on the density of water ρ , the acceleration due to gravity g, the viscosity of water ν (in length squared per unit of time), as well as l and s. Show that

$$\frac{P}{\rho l^2 s^3} = f(\mathit{Fr}, \mathit{Re}),$$

where the Froude and Reynolds numbers are, respectively,

$$Fr = \frac{s}{\sqrt{lg}}$$
 and $Re = \frac{sl}{\nu}$.

Problem 2. Show that the Lorenz equation is chaotic by showing that nearby initial data produces very different solutions over time. Plot the difference of the two solutions as a function in time.