Math 290 Homework 24

(1) Let a, b, n be integers with $n>1$ and let $d=\operatorname{gcd}(a, n)$. If the equation $\bar{a} x=\bar{b}$ has a solution $x=\bar{r}$ in \mathbb{Z}_{n}, prove that $d \mid b$.
(2) In the subset $S=\{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}\}$ of \mathbb{Z}_{10}, is there an element e of S that satisfies $x \cdot e=x$ for all $x \in S$?
(3) Prove or disprove: If $a^{2} \equiv b^{2}(\bmod n)$, then $a \equiv b(\bmod n)$ or $a \equiv-b(\bmod n)$.
(4) Repeat the previous problem when n is prime.
(5) If $p \geq 5$ is prime, prove that $p^{2}+2$ is composite. (Hint: Which equivalence classes in \mathbb{Z}_{6} could p be in?)
(6) Show that $10^{n} \equiv 1(\bmod 9)$ for every positive integer n.
(7) Prove that every positive integer is congruent to the sum of its digits $(\bmod 9)$.
(8) For $p=2,3,5$ compute $(a+b)^{p}$ in \mathbb{Z}_{p}. State and prove a general conjecture for all primes p that includes these results.

