Key for Sample Exam 3

(1) False
(2) True
(3) True
(4) False
(5) True
(6) False
(7) True
(8) False
(9) False
(10) True
(11) B
(12) C
(13) D
(14) B
(15) B
(16) D
(17) D
(18) D
(19) C
(20) A
(21) (a) The function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(n)=n+1$ is injective but not surjective.
(b) Disproof: Let $A=\{1\}, B=\{2,3\}$ and $C=\{4\}$. Set $f=\{(1,2)\}$, and $g=\{(2,4),(3,4)\}$. Then $g \circ f=\{(1,4)\}$ is injective, but g is not injective (since $g(2)=g(3)$).
(c) Proof: Suppose $g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right.$. Then, since g is injective, $f\left(a_{1}\right)=f\left(a_{2}\right)$. Since f is injective, $a_{1}=a_{2}$. Hence, $g \circ f$ is injective.
(22) First we not that since $5 x+1$ can never equal $5(x-2)$, the function f always maps elements of $\mathbb{R}-\{2\}$ to $\mathbb{R}-\{5\}$. Hence, it is a function with the given domain and codomain.

For $a, b \in \mathbb{R}-\{2\}$, suppose that $f(a)=f(b)$. Then

$$
\frac{5 a+1}{a-1}=\frac{5 b+1}{b-2} .
$$

Hence, crossmultiplying (which we can do since neither $a-2$ nor $b-2$ is zero),

$$
(5 a+1)(b-2)=(5 b+1)(a-2)
$$

and then simplifying, we find that $5 a b-10 a+b-2=5 a b-10 b+a-2$. Cancelling terms, we find that $9 a=9 b$ so that $a=b$. Hence, f is injective.

Let $a \in \mathbb{R}-\{5\}$. Set $b=\frac{2 a+1}{a-5}$. Note that since $2 a+1 \neq 2(a-5)$, we see that $b \neq 2$, so $b \in \mathbb{R}-\{2\}$.
Now

$$
\begin{aligned}
f(b) & =\frac{5 b+1}{b-2} \\
& =\frac{5\left(\frac{2 a+1}{a-5}\right)+1}{\left(\frac{2 a+1}{a-5}\right)-5} \\
& =\frac{5(2 a+1)+(a-5)}{(2 a+1)-2(a-5)} \\
& =\frac{11 a}{11} \\
& =a
\end{aligned}
$$

Hence, $f(b)=a$. Since a was arbitrary, we see that f is surjective.
In addition, we see that

$$
f^{-1}(x)=\frac{2 x+1}{x-5}
$$

(23) Suppose that $\bar{a}=\bar{b}$. Then $a \equiv b(\bmod 5)$. Hence, $a=b+5 k$. Then

$$
a^{5}=(b+5 k)^{5}=b^{5}+5 b^{4}(5 k)+10 b^{3}(5 k)^{2}+10 b^{2}(5 k)^{3}+5 b(5 k)^{4}+(5 k)^{5} \equiv b^{5} \quad(\bmod 5)
$$

Hence, $\overline{a^{5}}=\overline{b^{5}}$. Therefore, f is well defined.
(24) See the proof of Theorem 30.4, or the proof of Theorem 31.5 (applied to $S=\mathbb{N}$ as in Corollary 31.7).
(25) For $x \in A$ we note that $x+6 \in(6,11) \subseteq B$, so there is a function $f: A \rightarrow B$ given by $f(x)=x+6$. This function is injective since $f(a)=f(b)$ implies that $a+6=b+6$, so that $a=b$. Hence $|A| \leq|B|$.

For $x \in B$, we note that $0<x<50$, so $x / 10 \in A$. We may thus define a function $g: B \rightarrow A$ by $g(x)=x / 10$. This function is injective since $g(a)=g(b)$ implies that $a / 10=b / 10$, so that $a=b$. Hence, $|B| \leq|A|$.

By the Schröder-Bernstein theorem, we thus see that $|A|=|B|$.

