Key for Sample Exam 3

(1) False	(2) True	(3) True	(4) False	(5) True	(6) False	(7) True	(8) False	(9) False	(10) True
(11) B	(12) C	(13) D	(14) B	(15) B	(16) D	(17) D	(18) D	(19) C	(20) A

(21) (a) The function $f: \mathbb{N} \to \mathbb{N}$ given by f(n) = n + 1 is injective but not surjective.

(b) Disproof: Let $A = \{1\}$, $B = \{2,3\}$ and $C = \{4\}$. Set $f = \{(1,2)\}$, and $g = \{(2,4), (3,4)\}$. Then $g \circ f = \{(1,4)\}$ is injective, but g is not injective (since g(2) = g(3)).

(c) Proof: Suppose $g(f(a_1)) = g(f(a_2))$. Then, since g is injective, $f(a_1) = f(a_2)$. Since f is injective, $a_1 = a_2$. Hence, $g \circ f$ is injective.

(22) First we not that since 5x + 1 can never equal 5(x - 2), the function f always maps elements of $\mathbb{R} - \{2\}$ to $\mathbb{R} - \{5\}$. Hence, it is a function with the given domain and codomain.

For $a, b \in \mathbb{R} - \{2\}$, suppose that f(a) = f(b). Then

$$\frac{5a+1}{a-1} = \frac{5b+1}{b-2}$$

Hence, crossmultiplying (which we can do since neither a - 2 nor b - 2 is zero),

$$(5a+1)(b-2) = (5b+1)(a-2),$$

and then simplifying, we find that 5ab - 10a + b - 2 = 5ab - 10b + a - 2. Cancelling terms, we find that 9a = 9b so that a = b. Hence, f is injective.

Let $a \in \mathbb{R} - \{5\}$. Set $b = \frac{2a+1}{a-5}$. Note that since $2a + 1 \neq 2(a-5)$, we see that $b \neq 2$, so $b \in \mathbb{R} - \{2\}$. Now

$$f(b) = \frac{5b+1}{b-2}$$

= $\frac{5\left(\frac{2a+1}{a-5}\right)+1}{\left(\frac{2a+1}{a-5}\right)-5}$
= $\frac{5(2a+1)+(a-5)}{(2a+1)-2(a-5)}$
= $\frac{11a}{11}$
= a

Hence, f(b) = a. Since a was arbitrary, we see that f is surjective.

In addition, we see that

$$f^{-1}(x) = \frac{2x+1}{x-5}.$$

(23) Suppose that $\bar{a} = \bar{b}$. Then $a \equiv b \pmod{5}$. Hence, a = b + 5k. Then $a^5 = (b + 5k)^5 = b^5 + 5b^4(5k) + 10b^3(5k)^2 + 10b^2(5k)^3 + 5b(5k)^4 + (5k)^5 \equiv b^5 \pmod{5}$.

Hence, $\overline{a^5} = \overline{b^5}$. Therefore, f is well defined.

(24) See the proof of Theorem 30.4, or the proof of Theorem 31.5 (applied to $S = \mathbb{N}$ as in Corollary 31.7).

(25) For $x \in A$ we note that $x + 6 \in (6, 11) \subseteq B$, so there is a function $f : A \to B$ given by f(x) = x + 6. This function is injective since f(a) = f(b) implies that a + 6 = b + 6, so that a = b. Hence $|A| \leq |B|$.

For $x \in B$, we note that 0 < x < 50, so $x/10 \in A$. We may thus define a function $g : B \to A$ by g(x) = x/10. This function is injective since g(a) = g(b) implies that a/10 = b/10, so that a = b. Hence, $|B| \leq |A|$.

By the Schröder-Bernstein theorem, we thus see that |A| = |B|.