Proof of Cauchy's theorem

Theorem 1 (Cauchy's theorem). If p is prime and p|n, where n is the order of a group G, then G has an element of order p.

Proof. Let *S* be the set of ordered *p*-tuples (a_1, a_2, \ldots, a_p) with the property that each $a_i \in G$ and $a_1a_2 \cdots a_p = e$, the identity element of *G*. The set *S* has n^{p-1} elements, since we can choose the first p-1 of the a_i arbitrarily and then set $a_p = (a_1a_2 \cdots a_{p-1})^{-1}$. We think of the elements of the symmetric group $S_{n^{p-1}}$ as permuting the *p*-tuples in *S*. Let $f \in S_{n^{p-1}}$ be the element of $S_{n^{p-1}}$ sending any (a_1, a_2, \ldots, a_p) to $(a_p, a_1, a_2, \ldots, a_{p-1})$. This is an element of $S_{n^{p-1}}$ because if $(a_1a_2 \cdots a_{p-1})a_p = e$, then $a_p(a_1a_2 \cdots a_{p-1}) = e$ as well. Note that f^p is the identity permutation, so *f* has order *p* in $S_{n^{p-1}}$, and when *f* is written in cycle notation, every element of *S* is in either a 1-cycle or a *p*-cycle. If there are *k p*-cycles and *m* 1-cycles, then $n^{p-1} = kp + m$. But p|n, so p|m as well. In any 1-cycle, *f* sends an element (a_1, a_2, \ldots, a_p) of *S* to itself via the map sending it to $(a_p, a_1, a_2, \ldots, a_{p-1})$, so we have $a_p = a_1 = a_2 = \ldots = a_{p-1}$ and there is an element (g, g, \ldots, g) of *S* with $g \in G$ and $g^p = e$. Taking *g* to be the identity element $e \in G$ gives one such element of *S*, but this cannot be the only one, since there are *m* of them and $p|m \ge 1$. Thus, there is another element $x \in G$ with $x \neq e$ and $x^p = e$.