Math 371, Exam 1, Study Guide

GENERAL INFORMATION

- (1) The exam will cover all of chapters 1–3 and section 9.4 (2nd edition) or 10.4 (3rd edition).
- (2) Be sure to check the hours of the testing center, and give yourself enough time to take the exam.
- (3) Books and notes will not be allowed.
- (4) WARNING: this study guide is not meant to be exhaustive. Just because something is not on the study guide does not mean it will not be on the exam.

BASICS

- Be able to do all homework problems.
- Know all the definitions discussed in the book, especially the definitions of
 - a prime number
 - a ring, a (non)commutative ring with or without identity, an integral domain, a field
 - a zero divisor
 - a subring
 - a ring homomorphism and a ring isomorphism
 - the direct (Cartesian) product of two rings
 - a unit
 - the gcd of a pair of integers
 - the definition of \mathbb{Z}_n and the definition of + and \cdot for \mathbb{Z}_n
 - the field of quotients of an integral domain
- Know lots of examples of all the things we talked about, especially:
 - (1) Examples of rings, both commutative and non-commutative, with or without identity
 - (2) Examples of all sorts of homomorphisms
 - (a) A ring homomorphism that is injective but not surjective.
 - (b) A ring homomorphism that is surjective but not injective.
 - (c) A surjective homomorphism from \mathbb{Z} to \mathbb{Z}_n .
 - (d) A non-trivial ring isomorphism.
 - (e) A map that preserves addition, but not multiplication.
 - (f) A map that preserves multiplication, but not addition.

THEOREMS OR AXIOMS YOU SHOULD KNOW AND BE ABLE TO USE

- (1) The Well-Ordering Axiom
- (2) The division algorithm for \mathbb{Z}
- (3) The Euclidean algorithm for \mathbb{Z}
- (4) In \mathbb{Z} , the gcd of f and g can be written as uf + vg for some u and v.
- (5) The Fundamental Theorem of Arithmetic for \mathbb{Z}
- (6) Every field is an integral domain.
- (7) \mathbb{Z}_p is a field.
- (8) The equation ax = b has solutions in \mathbb{Z}_n if and only if (a, n)|b.
- (9) The operations of + and \cdot in \mathbb{Z}_n are well-defined.
- (10) In any ring R, and for any $a \in R$, we have $0 \cdot a = a \cdot 0 = 0$.
- (11) In any ring R, and for any $a \in R$, we have -(-a) = a
- (12) In any ring R, and for any $a, b \in R$, we have $(-a) \cdot b = -(ab)$
- (13) To check that a nonempty subset $S \subseteq R$ is a subring, it suffices to check that S is closed under subtraction and multiplication.
- (14) The image of a homomorphism $f: R \to S$ is a subring of S.

Theorems you should know and be able to prove and be able to use

(1) Cancellation is valid in any integral domain R: if $a \neq 0_R$ and ab = ac, then b = c. (Theorem 3.10 in the second edition, and Theorem 3.7 in the third edition).

- (2) If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$. (Theorem 2.2 in the second edition, and Theorem 2.6 in the third edition.)
- (3) Every finite integral domain is a field. (Theorem 3.11 in the second edition, and Theorem 3.9 in the third edition.)

SAMPLE PROBLEMS

- (1) Prove or disprove: \mathbb{Z}_{15} is a field.
- (2) Prove or disprove: $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$.
- (3) Prove or disprove: $\mathbb{Z}_8 \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.
- (4) Prove or disprove: If A and B are both subrings of C, then $A \cap B$ is a subring of A and of B and of C.
- (5) Prove or disprove: If A and B are both subrings of C, then $A \cup B$ is a subring of C.
- (6) What is the last digit of the number 7^{2010} ? (Hint: Use congruence (mod 10).)
- (7) Prove or disprove: The set of functions which are differentiable on all of \mathbb{R} forms a subring of the ring of all functions with domain \mathbb{R} , with the standard definitions of + and \cdot .
- (8) If there exists a ring isomorphism $A \to B$ we write $A \cong B$. Prove that \cong is an equivalence relation on the class of all rings.
- (9) Let T be the ring of continuous functions from \mathbb{R} to \mathbb{R} . Let $\theta : T \to \mathbb{R}$ be the function defined by $\theta(f) = f(5)$. Prove that θ is a surjective homomorphism. Is θ an isomorphism?