Math 371, Midterm Exam #2 Study Guide

GENERAL INFORMATION

- (1) The exam will cover Chapters 4, 5, and 6.
- (2) Books and notes will not be allowed.
- (3) WARNING: this study guide is not meant to be exhaustive. Just because something is not on the study guide does not mean it will not be on the exam.

BASICS

- (1) You should know everything that was on the first study guide, especially the basic properties of rings, in Chapter 3.
- (2) Ring Definitions:
 - a ring, a field, an integral domain
 - $\bullet\,$ a zero divisor, a unit
 - a ring homomorphism and a ring isomorphism
 - the Cartesian product of two rings
 - a monic polynomial and an irreducible polynomial
 - the gcd of two polynomials
 - an ideal
 - the kernel of a homomorphism
 - maximal ideals, prime ideals
 - principal ideals, ideals generated by a finite number of elements
 - the quotient ring of a ring by an ideal
- (3) Lots of examples of all the things we have discussed, especially:
 - Examples of rings, both commutative and non-commutative, of every kind.
 - Examples of polynomials, such as "an irreducible polynomial of degree 3 in $\mathbb{Q}[x]$ " or "A ring R and a polynomial of degree 2 in R[x] with 4 roots".
 - Examples of subrings and ideals with many different properties (including maximal ideals, nonmaximal prime ideals, ideals which are not principal, etc.).
 - A maximal ideal that does not contain all proper ideals in the ring.
 - An infinite ring and an ideal with a finite quotient ring.
 - An infinite ring and an ideal with an infinite quotient ring.
 - A field with 4 elements, and a ring with 4 elements that is not a field.
 - A field F that properly contains the rationals \mathbb{Q} and is properly contained in the reals \mathbb{R} (i.e., $\mathbb{Q} \subset F \subset \mathbb{R}$).

THEOREMS YOU SHOULD KNOW AND BE ABLE TO STATE AND PROVE AND USE

- The First Isomorphism Theorem for rings (Theorem 6.13 in both editions).
- For a field F and an irreducible $p(x) \in F[x]$, the extension field F[x]/(p(x)) contains a root of p(x) (Theorem 5.11 in both editions).
- Remainder and factor theorems (Theorems 4.14 and 4.15 in the second edition, or Theorems 4.15 and 4.16 in the third edition).

Theorems you should be able to use

- In F[x], the gcd of f(x) and g(x) can be written as a linear combination of f(x) and g(x).
- The counterpart of the Fundamental Theorem of Arithmetic for F[x]
- If F is a field, then F[x] is an integral domain.
- If F is a field and p(x) is a nonconstant polynomial, then F[x]/(p(x)) is a commutative ring with identity that contains F.
- F[x]/(p(x)) is a field if and only if p(x) is irreducible in F[x].
- The simple criterion for checking that a subset is an ideal (Theorem 6.1 in both editions).
- If R is a commutative ring with identity and I is an ideal of R, then R/I is an integral domain if and only if I is a prime ideal (Theorem 6.14 in both editions).

- If R is a commutative ring with identity and I is an ideal of R, then R/I is a field if and only if I is a maximal ideal (Theorem 6.15 in both editions).
- The set of cosets of an ideal forms a ring (the quotient ring). Specifically, addition and multiplication of cosets of an ideal are well defined.
- The kernel of a homomorphism is an ideal.
- for every ring R and every ideal I in R, there is a natural surjective homomorphism R to R/I, given by $r \mapsto r + I$ (Theorem 6.12).
- In a commutative ring with identity, every maximal ideal is prime.

SAMPLE PROBLEMS

- (1) Find the gcd of $4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $3x^3 + 5x^2 + 6x$ in $\mathbb{Z}_7[x]$.
- (2) Find the roots of the polynomial $x^3 + x^2 + 1$ in the field $\mathbb{Z}_2[x]/(x^3 + x + 1)$.
- (3) Prove that the set $\{a + b\sqrt{3} | a, b \in \mathbb{Q}\}$ is a field and is isomorphic to $\mathbb{Q}[x]/(x^2 3)$.
- (4) Explain why multiplication of cosets in R/J makes sense only if J is an ideal.
- (5) Construct a field of order 4.
- (6) Prove that \mathbb{Z}_4 is not a field.
- (7) Give an example of a maximal ideal in a ring that does not contain all proper ideals of the ring.
- (8) Give an example of a prime ideal I in $\mathbb{Z} \times \mathbb{Z}$ that is not maximal. Describe the quotient ring $(\mathbb{Z} \times \mathbb{Z})/I$.
- (9) Let T be the space of continuous functions from \mathbb{R} to \mathbb{R} . Let I be the set $\{g \in T : g(-2) = 0\}$. Prove that I is an ideal and that $T/I \cong \mathbb{R}$.