Math 371, Exam 1, Study Guide

GENERAL INFORMATION

- (1) The exam will cover all of chapters 1-3 and 4.1-4.2.
- (2) The exam will be in the testing center on Wednesday–Friday, February 2–4. After 2 pm on Friday the Testing Center will charge you a late fee. We suggest you take it earlier and save your money. Be sure to give yourself several hours to finish.
- (3) Books, notes, and calculators will not be allowed.
- (4) WARNING: this study guide is not meant to be exhaustive. Just because something is not on the study guide does not mean it will not be on the exam.

Basics

- Be able to do all homework problems.
- Know all the definitions discussed in the book, especially the definitions of
 - a prime number
 - a ring, a commutative ring, a ring with identity, an integral domain, a field
 - a zero divisor
 - a unit
 - a subring
 - a ring homomorphism and a ring isomorphism
 - the direct (Cartesian) product of two rings
 - the definition of \mathbb{Z}_n and the definition of + and \cdot for \mathbb{Z}_n
 - F[x], a monic polynomial, and an irreducible polynomial
 - the gcd of two integers or of two polynomials
- Know lots of examples of all the things we talked about, especially:
 - (1) Examples of rings, both commutative and non-commutative, of every order and type
 - (2) Examples of subrings with different properties.
 - (3) Examples of polynomials.
 - (4) Examples of all sorts of homomorphisms
 - (a) A ring homomorphism that is injective but not surjective.
 - (b) A ring homomorphism that is surjective but not injective.
 - (c) A surjective homomorphism from \mathbb{Z} to \mathbb{Z}_n .
 - (d) A non-trivial ring isomorphism.
 - (e) A map that preserves addition, but not multiplication.
 - (f) A map that preserves multiplication, but not addition.

Theorems or Axioms you should know and be able to use

- (1) The Well-Ordering Axiom
- (2) The division algorithm for \mathbb{Z} and F[x]
- (3) The Euclidean algorithm for \mathbb{Z} and F[x]
- (4) In \mathbb{Z} or in F[x] the gcd of f and g can be written as uf + vg for some u and v.
- (5) The Fundamental Theorem of Arithmetic.

THEOREMS YOU SHOULD BE ABLE TO PROVE AND BE ABLE TO USE

- (1) Every field is an integral domain.
- (2) \mathbb{Z}_p is a field.
- (3) The equation ax = b has solutions in \mathbb{Z}_n if and only if (a, n)|b.
- (4) The operations of + and \cdot in \mathbb{Z}_n are well-defined.
- (5) In any ring R, and for any $a \in R$, we have $0 \cdot a = a \cdot 0 = 0$.
- (6) In any ring R, and for any $a \in R$, we have -(-a) = a.
- (7) In any ring R, and for any $a, b \in R$, we have $(-a) \cdot b = -(ab)$.
- (8) To check that a subset $S \subseteq R$ is a subring, it suffices to check that S is closed under subtraction and multiplication.

- (9) If R is a commutative ring with multiplicative identity, then R[x] is a commutative ring with multiplicative identity.
- (10) If F is a field, then F[x] is an integral domain.
- (11) The image of a homomorphism $f: R \to S$ is a subring of S.
- (12) Cancellation is valid in any integral domain R: if $a \neq 0_R$ and ab = ac, then b = c. (Theorem 3.10 in the second edition, and Theorem 3.7 in the third edition. Also, note that the proof in the 3rd edition has a double typo: bc should be ac, twice.)
- (13) A finite integral domain is a field.
- (14) For any $f, g \in R[x]$ we have $\deg(fg) \le \deg(f) + \deg(g)$. If R is an integral domain, then $\deg(fg) = \deg(f) + \deg(g)$. (Theorem 4.2)

SAMPLE PROBLEMS

- (1) Prove or disprove: \mathbb{Z}_{15} is a field.
- (2) Prove or disprove: $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$.
- (3) Prove or disprove: $\mathbb{Z}_8 \cong \mathbb{Z}_2 \times \mathbb{Z}_4$.
- (4) Prove or disprove: If A and B are both subrings of C, then $A \cap B$ is a subring of A and of B and of C.
- (5) Prove or disprove: If A and B are both subrings of C, then $A \cup B$ is a subring of C.
- (6) Use the Euclidean algorithm to find gcd(63, 189). Write the gcd as a linear combination of the two integers:

$\gcd(63, 189) = 63a + 189b.$

- (7) Find the gcd of $4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $3x^3 + 5x^2 + 6x$ in $\mathbb{Z}_7[x]$.
- (8) What is the last digit of the number 7^{2010} ? (Hint: Use congruence (mod 10).)
- (9) Prove or disprove: The set of functions which are differentiable on all of \mathbb{R} forms a subring of the ring of all functions with domain \mathbb{R} , with the standard definitions of + and \cdot .
- (10) If there exists a ring isomorphism $A \to B$ we write $A \cong B$. Prove that \cong is an equivalence relation on the class of all rings.
- (11) Prove that an integer is divisible by 11 if and only if the alternating sum of its digits is congruent to 0 modulo 11; for example $132 \mapsto 1 3 + 2 \equiv 0 \mod 11$, so 11|132.
- (12) Let T be the ring of continuous functions from \mathbb{R} to \mathbb{R} . Let $\theta : T \to \mathbb{R}$ be the function defined by $\theta(f) = f(5)$. Prove that θ is a surjective homomorphism. Is θ an isomorphism (prove or disprove)?