Math 371, Midterm Exam #3 Study Guide

GENERAL INFORMATION

- (1) The exam will cover everything we have done since the last exam, including sections 7.1 to 7.9 (second edition) or 7.1-7.5 and 8.1-8.4 (third edition).
- (2) Books, notes, and calculators will not be allowed.
- (3) WARNING: this study guide is not meant to be exhaustive. Just because something is not on the study guide does not mean it will not be on the exam.

BASICS

- (1) Be able to do all homework problems.
- (2) Know all the definitions discussed in the book, especially the definitions of
 - a group, an abelian group, a subgroup, a cyclic group
 - the center of a group, Cartesian products of groups, a simple group
 - group isomorphism and group homomorphism
 - left and right cosets
 - congruence modulo a subgroup
 - index of a subgroup
 - $\bullet\,$ order of a group and an element
 - subgroup generated by a finite number of elements
 - quotient group
 - kernel of a group homomorphism
- (3) Lots of examples of all the things we have discussed, especially:
 - Non-abelian groups: S_n , A_n , D_n , matrix groups.
 - Abelian groups: $\mathbb{Z}, \mathbb{Z}_n, U_n$.
 - An element of finite order contained in a group of infinite order.
 - Cyclic groups of all orders—both infinite and finite.
 - Groups which are not cyclic, including a (sub)group generated by two elements which is not cyclic.
 - A group with a non-trivial center.
 - A subgroup of an infinite group that has finite index.

THEOREMS YOU SHOULD KNOW AND BE ABLE TO PROVE AND USE

- The First Isomorphism Theorem for groups (Theorem 7.42 in Ed.2, Theorem 8.20 in Ed.3).
- The center of a group is a subgroup (Theorem 7.12 in Ed.2, Theorem 7.13 in Ed.3).
- Lagrange's theorem: the order of a subgroup of a finite group divides the order of the group (Theorem 7.26 in Ed.2, Theorem 8.5 in Ed.3).
- The simple criterion for checking that a subset is a subgroup (Theorem 7.10 in Ed.2, Theorem 7.11 in Ed.3).
- Every ring is an abelian group under the addition of the ring.
- If R is a ring with identity, then the set of units of R is a group under multiplication of the ring.
- The identity element of a group is unique.
- Cancellation holds in a group; that is, ab = ac or ba = ca implies that b = c.
- In a group, inverses are unique.
- Every k-cycle in S_n has order k.
- Groups of prime order are cyclic.
- The kernel of a homomorphism $f: G \to H$ is a normal subgroup of G.
- A homomorphism is injective if and only if its kernel is trivial.
- If N is a normal subgroup of G, then the set G/N of all cosets of N in G forms a group with the product (Na)(Nc) = N(ac) (the induced operation).
- If N is a normal subgroup of G, then there is a (canonical) surjective homomorphism $G \to G/N$.

Theorems you should be able to use

- Every permutation is either even or odd, but not both.
- Every subgroup of a cyclic group is cyclic.
- Disjoint cycles in S_n commute.
- Every permutation in S_n is the product of disjoint cycles.
- Every permutation is the product of transpositions.
- If N is a normal subgroup of G and K is a subgroup of G containing N, then K/N is a subgroup of G/N.
- Cayley's Theorem: every group is isomorphic to a group of permutations.
- The Third Isomorphism Theorem for groups.
- Equivalent conditions to being a normal subgroup (Theorem 7.34 in Ed.2, Theorem 8.11 in Ed.3).
- G/N is abelian if and only if $aba^{-1}b^{-1} \in N$ for all $a, b \in G$.

SAMPLE PROBLEMS

- (1) Show that the group $\mathbb{Z}_5 \times \mathbb{Z}_2$ is cyclic, and that $\mathbb{Z}_6 \times \mathbb{Z}_2$ is not cyclic but is generated by two elements.
- (2) Prove that inverses are unique in a group.
- (3) Give an example of a non-abelian group G of order 24 and identify its center Z(G).
- (4) Are there any groups of order 3 which are not cyclic? If so, give an example; if not, prove it.
- (5) Find a non-cyclic normal subgroup N of D_4 and determine what D_4/N is isomorphic to.
- (6) List all subgroups of S_3 and show whether each is normal.
- (7) Let K be a subgroup of a group G and let $b \in G$. Show that the set $b^{-1}Kb = \{b^{-1}kb : k \in K\}$ is a subgroup of G.
- (8) Prove that A_n is a normal subgroup of S_n .
- (9) Write the permutation (147)(24)(3261)(45) as a product of disjoint cycles.
- (10) Determine whether $(1423)(58)(679) \in S_{10}$ is even or odd.
- (11) Prove that $H := \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \middle| a = \pm 1, b \in \mathbb{Z} \right\}$ is a subgroup of $GL(2, \mathbb{Q})$, the group of invertible 2 by 2 matrices with entries from \mathbb{Q} .
- (12) Is there an element in S_4 of order 6? Prove that your answer is correct.
- (13) Prove that there is no nontrivial group homomorphism from S_3 to \mathbb{Z}_3 .
- (14) Prove that $(\mathbb{Z} \times \mathbb{Z})/\langle (0,1) \rangle$ is an infinite cyclic group.