- (1) (a) Divide 3¹⁰²⁰³ by 101. What is the remainder?
 (b) Find a primitive root modulo 97.
- (2) Prove or provide a counterexample for each.
 - (a) $gcd(n,\varphi(n)) > 1$.
 - (b) If d|m, then $\varphi(d)|\varphi(m)$.
 - (c) If the same primes divide m and n, then $n\varphi(m) = m\varphi(n)$.
- (3) (Page 108, problem 26) Let $p \equiv 3 \pmod{4}$ be prime. Show that $x^2 \equiv -1 \pmod{p}$ has no solutions. (Hint: Suppose x exists. Raise both sides to some power and find a contradiction.)