(1) (a) Divide 3^{10203} by 101 . What is the remainder?
(b) Find a primitive root modulo 97 .
(2) Prove or provide a counterexample for each.
(a) $\operatorname{gcd}(n, \varphi(n))>1$.
(b) If $d \mid m$, then $\varphi(d) \mid \varphi(m)$.
(c) If the same primes divide m and n, then $n \varphi(m)=m \varphi(n)$.
(3) (Page 108, problem 26) Let $p \equiv 3(\bmod 4)$ be prime. Show that $x^{2} \equiv-1(\bmod p)$ has no solutions. (Hint: Suppose x exists. Raise both sides to some power and find a contradiction.)

