(1) If $(n, e)=(1484884039,61229153)$, factor n using the low decryption exponent continued fraction attack.
(2) Use the continued fraction attack to find the decryption exponent for the public key $(n, e)=$ (60842791409, 50073749237).
(3) (Page 194, problem 19) Let $n=p q$ be a product of two distinct primes.
(a) Let m be a multiple of $\phi(n)$. Show that if $\operatorname{gcd}(a, n)=1$, then $a^{m} \equiv 1(\bmod p)$ and $(\bmod q)$.
(b) For the same m, let a be an arbitrary integer $(\bmod n)$, so that possibly $\operatorname{gcd}(a, n) \neq 1$. Show that $a^{m+1} \equiv a(\bmod p)$ and $(\bmod q)$.
(c) Let e and d be encryption and decryption exponents for RSA with modulus n. Show that $a^{e d} \equiv a(\bmod n)$ for all a. This shows that we do not need to assume $\operatorname{gcd}(a, n)=1$ for RSA to work.
(d) If p and q are large, why is it likely that $\operatorname{gcd}(a, n)=1$ for a randomly chosen a ?

