
Homework 22, due October 26

(1) Recall that in the Pollard rho method of factoring, we choose a polynomial f(u) and a seed
u0. For i ≥ 1, we define ui recursively as ui = f(ui−1). The idea is that if n = pq, the
ui will start repeating (mod p) before they repeat (mod n), so we should have ui ≡ uj

(mod p) for some i, j. We don’t want to check gcd(ui − uj, n) for every i, j, so instead we
check gcd(u2s − us, n) for s = 1, 2, 3, . . . since eventually we’ll find an s that’s a multiple of
the cycle length.

In SAGE code it might look like this: (Here f(u) = u2 + 1 and n = 36287.)

u=[1]

for i in range(1,20):

u.append(lift(mod(u[i-1]^2+1, 36287)))

for s in range(1,10):

print(gcd(u[2*s]-u[s], 36287))

Factor 16019, 10277, and 199934971 using the Pollard rho method. How large does s get
before you find a factor? Look at the numbers ui (mod p), where p is the factor you found.
How long is the cycle in each case?

(2) (Page 198, problem 5) Factor

8834884587090814646372459890377418962766907

by the p− 1 method.
(3) The ciphertext

570360711957965038148054313442031747824957123638823375528569417305522

was encrypted with RSA with public key (n, e) given by

(1849984765134873910404765458412903449879887030956920096187415338501539, 9007).

The prime factors p and q of n are consecutive primes. Decrypt.

1


