Homework 22, due October 26
(1) Recall that in the Pollard rho method of factoring, we choose a polynomial $f(u)$ and a seed u_{0}. For $i \geq 1$, we define u_{i} recursively as $u_{i}=f\left(u_{i-1}\right)$. The idea is that if $n=p q$, the u_{i} will start repeating $(\bmod p)$ before they repeat $(\bmod n)$, so we should have $u_{i} \equiv u_{j}$ $(\bmod p)$ for some i, j. We don't want to check $\operatorname{gcd}\left(u_{i}-u_{j}, n\right)$ for every i, j, so instead we check $\operatorname{gcd}\left(u_{2 s}-u_{s}, n\right)$ for $s=1,2,3, \ldots$ since eventually we'll find an s that's a multiple of the cycle length.

In SAGE code it might look like this: (Here $f(u)=u^{2}+1$ and $n=36287$.)

```
u=[1]
```

for i in range $(1,20)$:
u.append (lift(mod (u[i-1] $\left.\left.{ }^{\wedge} 2+1,36287\right)\right)$)
for s in range (1,10):
print (gcd(u[2*s]-u[s], 36287))
Factor 16019,10277 , and 199934971 using the Pollard rho method. How large does s get before you find a factor? Look at the numbers $u_{i}(\bmod p)$, where p is the factor you found. How long is the cycle in each case?
(2) (Page 198, problem 5) Factor

8834884587090814646372459890377418962766907
by the $p-1$ method.
(3) The ciphertext

570360711957965038148054313442031747824957123638823375528569417305522
was encrypted with RSA with public key (n, e) given by
(1849984765134873910404765458412903449879887030956920096187415338501539, 9007).
The prime factors p and q of n are consecutive primes. Decrypt.

