(1) Let $n=1042387$. Factor $t^{2}-n$ for

$$
t=1021,1027,1030,1061,1112,1129,1148,1175,1217,1390,1520 .
$$

Make a matrix (as in section 6.4.1) and find at least two linear dependencies (mod 2) among the rows. Use this information to factor n. Explain your work.
(2) Let $n=527773$. Calculate the values of the polynomial $f(x)=(x+\lfloor\sqrt{n}\rfloor)^{2}-n$ for x from -17 to 17 and factor them. (Remember that primes p with $\left(\frac{n}{p}\right)=-1$ will never divide $f(x)$.) Use this information to find some squares that factor into small primes $(\bmod n)$, and use this information to factor n. Explain your work.
(3) Bob's public RSA key is $(n, e)=(471983537467118210233708045324888209721498527413,37)$. You have reason to believe that Bob has a fairly weak RSA key. You intercept a message intended for Bob:
27597870388144542006827731002740651679942899536
Decrypt. Explain how you did it.

