(1) Alice, Bob, and Eve use a public key cryptosystem; they have keys k_{A}, k_{B}, k_{E} respectively. (Thus Alice has encryption and decryptions functions $E_{k_{A}}$ and $D_{k_{A}}$, etc.) Alice proposes that to send messages, they use the following protocol for user X to send message M to user Y (messages are of the form (sender's name, text, receiver's name), and $M \mid X$ is the concatenation of the strings M and X):

- X sends Y the message $\left(X, E_{k_{Y}}(M \mid X), Y\right)$.
- Y 's computer decrypts $M \mid X$ by applying $D_{k_{Y}}$, and acknowledges receipt by automatically sending X the message $\left(Y, E_{k_{X}}(M \mid Y), X\right)$.
Eve claims that this protocol is too complicated, and that it would be easier to do the following:
- X sends $Y\left(X, E_{k_{Y}}(M), Y\right)$.
- Y acknowledges receipt by sending $X\left(Y, E_{k_{X}}(M), X\right)$.

If Eve can intercept Alice and Bob's encrypted messages, how could she use this simplified protocol to read a message M that Alice has previously sent (encrypted) to Bob?
(2) Let $p=37$. Evaluate $L_{2}(24)$.
(3) (Page 215, problem 8) Suppose you have a random 500-digit prime p. Some people want to store passwords, written as numbers. If x is the password, then the number $2^{x}(\bmod p)$ is stored in a file. When y is given as a password, the number $2^{y}(\bmod p)$ is compared with the entry for the user in the file. Suppose someone gains access to the file. Why is it hard to deduce the passwords? If instead p is chosen to be a five digit prime, why would the system not be secure?

