(1) Use the Baby Step, Giant Step method to compute $L_{3}(11)$ for $p=401$. Show your work.
(2) Use the Pohlig-Hellman algorithm to compute $L_{2}(28)$ for $p=37$. Show your work.
(3) (Page 216, problem 12) Consider the following Baby Step, Giant Step attack on RSA, with public modulus n. Eve knows a plaintext m and a ciphertext c. She chooses $N^{2} \geq n$ and makes two lists: The first list is $c^{j}(\bmod n)$ for $0 \leq j<N$. The second list is $m c^{-N k}$ $(\bmod n)$ for $0 \leq k<N$.
(a) Why is there always a match between the two lists, and how does a match allow Eve to find the decryption exponent d ?
(b) Your answer to the first part may be partly false. What Eve has really found is an exponent d such that $c^{d} \equiv m(\bmod n)$. Explain why the d you find may not be the decryption exponent. (Usually d is very close to being the correct decryption exponent.)
(c) Why is this not a useful attack on RSA? (Hint: How long are the lists? Compare to trial division.)

