(1) Alice and Bob perform a Diffie-Hellman key exchange with prime 257. They decide to ignore whether α is a primitive root, and choose $\alpha=2$ to get a key $2^{x y}$, where x and y are Alice and Bob's secret exponents. Show that if $x y$ is divisible by 8 , then the key is either 1 or 256 . For randomly chosen x, y, how often does this happen? (Consider the possible $x(\bmod 8)$ and $y(\bmod 8)$.$) Why does this mean that the choice of \alpha$ is bad?
(2) Alice and Bob use the ElGamal cryptosystem with $p=62501$ and $\alpha=2$. Bob tells Alice that $\beta=236$. Use the Pohlig-Hellman algorithm to compute Bob's secret exponent a. Next, Alice sends the ciphertext $(r, t)=(27629,58211)$ to Bob. What is Alice's (numerical) message?
(3) Bob's ElGamal public key is $(p, \alpha, \beta)=$ (336362578443724754190512071579633760409200285967967, 3, 1830).
Alice encrypts two messages $M 1$ and $M 2$ and sends Bob the two messages
(109418989131512359209, 108573740299231594393834269064425021470450637558918) (109418989131512359209, 295272957753653838586960198464712675128742672940467)
Eve intercepts the messages and knows that the first message $M 1$ is "This is a test." Find M2.

