(1) (Page 466, problem 1) Consider the sequence $2^{0}, 2^{1}, 2^{2}, \ldots(\bmod 15)$.
(a) What is the period of this sequence?
(b) Suppose you want to use Shor's algorithm to factor $n=15$. What value of m would you take?
(c) Suppose the measurement in Shor's algorithm yields $c=192$. What value do you obtain for r ? Does this agree with your earlier answer?
(d) Use the value of r from part c to factor 15.
(2) (Page 466, problem 2a) Let $0<s \leq m$. Fix an integer c_{0} with $0 \leq c_{0}<2^{s}$. Show that

$$
\sum_{\substack{0 \leq c<2^{m} \\ c \equiv c_{0}}} e^{\frac{2 \pi i c x}{2 m}}=0
$$

if $x \not \equiv 0\left(\bmod 2^{m-s}\right)$ and that this sum equals

$$
2^{m-s} e^{2 \pi i x c_{0} / 2^{m}}
$$

if $x \equiv 0\left(\bmod 2^{m-s}\right)$. (Hint: Write $\left.c=c_{0}+j 2^{s}.\right)$
(3) (Page 466, problem 3) Suppose j / r and j_{1} / r_{1} are two distinct rational numbers with $0<$ $r, r_{1}<n$. Show that

$$
\left|\frac{j_{1}}{r_{1}}-\frac{j}{r}\right|>\frac{1}{n^{2}}
$$

Now suppose, as in Shor's algorithm, that we have

$$
\left|\frac{c}{2^{m}}-\frac{j}{r}\right|<\frac{1}{2 n^{2}},\left|\frac{c}{2^{m}}-\frac{j_{1}}{r_{1}}\right|<\frac{1}{2 n^{2}} .
$$

Show that $j / r=j_{1} / r_{1}$.

