(1) (Problem 6, page 370) Factor $n=35$ by the elliptic curve method by using the elliptic curve $y^{2} \equiv x^{3}+26$ and calculating 3 times the point $P=(10,9)$. Factor $n=35$ by the elliptic curve method by using the elliptic curve $y^{2} \equiv x^{3}+5 x+8$ and the point $P=(1,28)$.
(2) (Problem 8, page 370) Devise an analog of the procedure in exercise 8(a) in Chapter 7 that uses elliptic curves.
(3) (Problem 3, page 375) Factor 3900353 using elliptic curves. Try to factor 3900353 using the $p-1$ method. Using the knowledge of the prime factors from the elliptic curve factorization, explain why the $p-1$ method does not work well for this problem.

