(1) Write down the addition table for the elliptic curve $E: y^{2}+x y \equiv x^{3}+1(\bmod 2)$.
(2) Choose a message of at least five characters. Let $p=102957830214234598523542370111119$. Encode your message as a point on the curve $E: y^{2} \equiv x^{3}+23 x+17(\bmod p)$. Use one extra character at the end of your message to make sure it encodes as a point.
(3) Let $p=102957830214234598523542370111119$. Define the elliptic curve E by $E: y^{2} \equiv$ $x^{3}+4 x+4(\bmod p)$. Let A be the point $(1,3)$ and B be the point
(69191178569848326160572708363740, 69345928396974443058108559876130).
You receive the message

$$
\begin{aligned}
& y_{1}=(27122221111077269330209558694853,56731441929119870413208632138532), \\
& y_{2}=(102024656218492931041167221682861,101431596619654710328174830883350) \\
& \text { and know that the private key for this cryptosystem is } a=1995 . \text { Decrypt into a message in } \\
& \text { English. }
\end{aligned}
$$

