Homework 9, due September 23
(1) (Page 146, problem 1) Consider the following DES-like encryption method. Start with a message of $2 n$ bits. Divide it into two blocks of length n, a left half and a right half: $M_{0} M_{1}$. The key K consists of k bits, for some integer k. There is a function $f(K, M)$ that takes inputs of k and n bits and gives an output of n bits. One round of encryption starts with a pair $M_{j} M_{j+1}$. The output is the pair $M_{j+1} M_{j+2}$, where

$$
M_{j+2}=M_{j} \oplus f\left(K, M_{j+1}\right)
$$

(Here \oplus means XOR, or addition mod 2 on each bit.) This is done for m rounds, so the ciphertext is $M_{m} M_{m+1}$.

If you have a machine that does the m-round encryption just described, how would you use the same machine to decrypt the ciphertext $M_{m} M_{m+1}$ using the same key K ?
(2) (Continued.)
(a) Suppose K has n bits and $f(K, M)=K \oplus M$, and suppose that the encryption process consists of $m=2$ rounds. If you know only a ciphertext, can you deduce the plaintext and the key? If you know a ciphertext and the corresponding plaintext, can you deduce the key? Justify your answers.
(b) Suppose K has n bits and $f(K, M)=K \oplus M$, and suppose the encryption process consists of $m=3$ rounds. Why is this system not secure?
(3) Find the number of different (good) keys there are for a 2 by 2 Hill cipher without counting them one by one, and find the number of keys with determinant 1. Remember that the determinant has to be relatively prime to 26 . Here's one approach to solving the problem:
(a) Show that the number of good keys mod 26 is equal to the number of good keys mod 13 times the number mod 2. (Find an explicit one-to-one map between matrices mod 26 , and pairs of matrices, where the first is a matrix $\bmod 2$ and the second is a matrix $\bmod 13$.
(b) Show that the number of non-invertible matrices mod a prime p is $(2 p-1)^{2}+(p-1)^{3}$ by showing the following claims. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then A is non-invertible if and only if $a d \equiv b c(\bmod p)$. There are two cases: $a d \equiv b c \equiv 0$ or $a d \equiv b c \not \equiv 0$.
(i) The first case happens $(2 p-1)^{2}$ times.
(ii) The second case happens $(p-1)^{3}$ times.
(c) From this conclude that the number of good keys is 157248.

Now that you have the number of 2 by 2 Hill cipher keys whose determinant is relatively prime to 26 , you can find the number which have determinant 1 as follows:
(d) Find a 2 by 2 matrix with determinant a, for every number a relatively prime to 26 .
(e) Show that this matrix with determinant a has an inverse modulo 26.
(f) Use this matrix to establish a pairing between matrices with determinant 1 and matrices with determinant a.
(g) Now you know that there are the same number of matrices with determinant 1 as there are with determinant a, for every a which is relatively prime to 26 . Find the number of matrices whose determinant is 1 .

