Group A

Math 485
Project 4
September 11, 2015

OCRAI Technical Report

In response to recent security breaches, OCRAI has asked that we create a
nontrivial method of encryption to keep company information secure. Because the
security breaches have occurred when company employees have accidentally sent
text messages to the wrong recipient, OCRAI has asked that our encryption system
be capable of encrypting a plaintext message of up to 140 characters in length (the
length of a standard text message) and outputting a ciphertext that can be sent in, at
most, 700 characters (the length of five text messages). The user must be able to
input the message in standard characters.

As a result, we have created an algorithm that converts each letter into a
three-digit number. To do so, we begin by randomly choosing a letter to be assigned
the value of 1. The next letter in the alphabet is assigned the value of 2; the next, 3.
This continues throughout the alphabet until each letter has been assigned a
numeric value. We then choose any three-digit number between 000 and 999 that is
equivalent to that letter’s value, mod 26. This three-digit number is the ciphertext
translation of the plaintext letter. We then take each letter of the outgoing message
and convert the letter into its three-digit ciphertext equivalent. The three-digit
numbers are written one after the other, not separated by spaces, periods, or other

marks. Because of this, punctuation marks may be included or left out, as desired.

Paul Jenkins
Typewritten Text
Group A

However, the space character is replaced by a period followed by a space (‘. ‘) in
order to more clearly show the beginning and ends of words.

As an example, suppose we assign the letter D a value of 1, E a value of 2, and
so forth. Then we can choose any three-digit number equivalent to 1 (mod 26) to
represent D, any three-digit number equivalent to 2 (mod 26) to represent E, etc.
For instance, we might choose 027, 391, or 625 to represent D, and 080, 184, or 730

to represent E. By following this pattern, we could represent the alphabet as follows:

Letter A B C D E F G
Numeric 24 25 26 1 2 3 4
Value
Ciphertext 596 805 000 391 730 523 394

This encryption system creates roughly 1.53 x 105> different ciphers. There are 26
ways to shift the alphabet (i.e., to assign a numeric value to each consecutive letter
of the alphabet). Because there are approximately 38 different values between 000
and 999 for each numeric value (mod 26), we can assign one of these 38 three-digit
cipher-values to each letter. Therefore, with 26 shifts of the alphabet, and 38
different ways to represent each of the 26 letters, there are a total of 26 x (26"38)
ways to encrypt the alphabet, or 1.53 x 103> different ciphers. While this encryption
algorithm creates more than a septendecillion ciphers, the receiver can relatively
easily decrypt the messages once they have the key.

The sender must begin each message with the key words “I am”. According to

the alphabet shift listed above (with D equal to 1, etc.), “I am” could be encrypted as

“162.596790”. From this key, the receiver can take the first value (mod 26) and see
that 162 = 6 (mod 26), and therefore the letter I is assigned the numeric value of 6.
The receiver may then number the rest of the alphabet—] would be assigned the
numeric value of 7, etc. He or she will then find the value (mod 26) of each three-
digit “letter” throughout the message. By matching this value with its associated
letter according to the alphabet shift indicated by the key, the receiver can fully
decrypt the message.

This algorithm allows us to encrypt any text messages exchanged between
company employees. Moreover, because each plaintext character is replaced only by
three ciphertext characters (with exception of the space character, which is replaced
only by two characters), the maximum message length would be 420 characters,
well within the limit requested by OCRAI In accordance with OCRAI’s desires that
such information leaks not happen again, we are confident that this encryption

algorithm will provide increased security to the company.

Group B
09/10/15

From the best IMC team: _
To: ORCAI
The Sasquatch Cipher

We were sorry to hear about the potential disaster that could happen to your company
with sensitive information being sent to wrong recipients. However, we were excited at the
opportunity to create a completely unique and practically unbreakable cipher for your company
in order to ensure security of this important information. In fact, this cipher is so good, it is
easier to spot Sasquatch than it is to crack the cipher; hence the name.

First we will explain the key to the cipher. The key has two components that are
separated by a period (i.e. 123.1, the first component being “123” and the second component
being “17). First, we will address the first component of the key.

The first part of the key will be given as any random number that is up to 9, unique digits
composed of integers 1 to 9. For example: “123”, “47892”, or “159”. Remember, the first part
of the key cannot consist of any repeated integers such as “115,” “3345,” or “777777.”

Next, we use each digit of the first part of the selected key, in order, one at a time, and assign
them to the first few letters of the alphabet. Example: for the key whose first part “742,” we
assign A-7, B-4, C-2. Next, we proceed to go back to the next smallest integer and assign it to
the next letter. So we return to our example and we would assign D-1. We simply count
upwards, and assign each integer to the next letter. Remember however, once an integer has
already been assigned to a letter, you may not use that integer again. Simply skip it and use the

next highest integer. Thus in our example, E-3 (since C-2), F-5, G-6, and so on and so forth until

Paul Jenkins
Typewritten Text
Group B

you reach the letter Z. We will then assign the next highest integer to [] (space, being able to
have spaces between the words in our plain-text message).
Example: Key is 485.3 (NOTE: we have only covered the “485” component of our key)
A-4, B-8, C-5, D-1, E-2, F-3, G-6, H-7, -9, J-10, K-11, L-12, M-13, N-14, O-15, P-16, Q-17, R-
18, S-19, T-20, U-21, V-22, W-23, X-24, Y-25, Z-26, []-27.

We can then express a phrase by assigning each letter and space to its’ corresponding
number and separating each number by a period in order to keep the order.
Example (using the key above):
plaintext: Josh Bundy should not be confused with Ted Bundy.

after assigning plaintext to integers:

10.15.19.7.27.8.21.14.1.25.27.19.7.15.21.12.1.27.14.15.20.27.8.2.27.5.15.14.3.21.19.2.1.27.23.9.
20.7.27.20.2.1.27.8.21.14.1.25

Once we have assigned each plaintext letter to a corresponding number, we use the
second component of our cipher key. We will proceed to send each number through a quadratic
equation in the form of x*2+b, the second component of our key representing b in the
equation. In the example above, the second component of our key is “3” so the equation through
which we will send each number is x"2+3.
Example (continuing from above)

final ciphertext:

103.228.364.52.732.67.444.199.4.628.732.364.52.228.444.147.4.732.199.228.403.732.67.7.732.

28.228.199.12.444.364.7.4.732.532.84.403.52.732.403.7.4.732.67.444.199.4.628

Thus, once we have a ciphertext and the key, in order to decipher the message we would
go backwards, taking the inverse of the equation and assigning each letter of the alphabet to its’
corresponding number, based on the first component of the key.

We can assure you that this cipher is very secure and will help your company succeed in
all of their endeavors by keeping their trade secrets and important information safe and in the

right hands. Good luck!

Group C

Encryption Method Report

Math 485

September 2015
Dear OCRAI:

IMC is a global leader in the creation of cryptosystems to create secure communication
methods and we are glad to assist you. As your organization has learned in an unfortunate
matter, without a secure cryptosystem to communicate, it is very easy for information to be
captured or misplaced. Our team has created a custom protocol with which to secure your
information so that it can easily be encrypted, transmitted or stored, and then decrypted as
necessary. Initially, we felt that we might attempt a system using a variation of a cipher on the
English alphabet but we then developed the method described further in this letter that allows
for information to be encrypted with only a doubling of the message size and using a 10 digit
key. We feel that this system will be most secure and useful as OCRAI conducts daily business
operations.

In Kerckhoffs’ La Cryptographie Militaire, he discusses that the security of any
cryptographic system should be based on the key and not on the obscurity of the encryption
algorithm. (Kerckhoffs 1883) This was one of the main ideas that guided our creative process of
inventing an encryption algorithm.

Our idea is a simple one that simply involves a process of scrambling the order of the
plaintext, mixed with random dummy text. Below we outline the algorithm involved in encryption,
after which an example of encryption will be provided.

Encryption

1. Create a plaintext message which has 140 characters or fewer.
2. Randomly generate a 10-digit key using alphanumeric characters (0-9).

3. To ensure security, the plaintext message must be padded to reach a character length of
150. This padding is accomplished by adding randomly generated alphabetic characters
after the plaintext and QQ to denote the end of your plaintext portion and the beginning
of the padding text.

4. Randomly generate dummy text that is equivalent in length to your plaintext message.

Paul Jenkins
Typewritten Text
Group C

10.

11.

12.

Assign each letter of your plain, and dummy, text a number (0-25) based on its position
in the alphabet.

Add the numerical values of your dummy text to the numerical values plaintext to obtain
a new, obfuscated, plaintext document.

Insert the dummy text in the even positions of your plaintext, thus every character of the
original message is now separated by a character of the dummy text. Note: the first
character of this obfuscated text should be a character of your plaintext, not the dummy
text.

The text is then broken into 10 character blocks. This is another reason why padding text
needs to be added after our plaintext message, to reach a multiple of 10 for the length of
the entire text to encrypt.

The first n characters of each block are then moved from the front of the block to the
back of the block. n is determined by the integer value of the first character of the key.

The first character of the entire text will then be moved from the front to the back.
Effectively shifting the text by one character to enhance security and ensure the the 10
character blocks are not the same for the second scrambling.

After this first character shift, separate the text again into 10 character blocks and repeat
steps 7 and 8, however this time using the second integer value of the key to determine
the number of characters that are moved from the front of the 10 digit block, to the back
of the same block.

Continue this process until all of the values of the key have been used in scrambling the
blocks

Example

Plaintext: “Hello | am currently studying math” length = 29, remove spaces.
Key: 4837291021
Dummy text: “aptent taciti sociosqu seesguita” length = 29, remove spaces.

Add QQ and padding text at the end of your plain text to reach 150 characters, thereby
increasing security.

a. Therefore your plaintext would now be “...studying mathQQajdfinaklisd...”

b. for simplicity and readability, the padding has not been included in this example.

5. Plaintext value, using (0-25) for (a-z) values:
“7-4-11-11-14-8-0-12-2-20-17-17-4-13-19-11-24-18-19-20-3-24-8-13-8-12-0-19-7...”
Dummy text value:
“0-15-19-4-13-19-19-0-2-8-19-8-18-14-2-8-12-18-16-20-18-4-4-18-6-20-8-19-0...”

5. Added for new plaintext value. plain(1) + dummy(1) = new(1) - ... - plain(n)+dummy(n) =
new(n):

“7-19-30-15-27-27-19-12-4-28-36-25-22-37-21-19-38-36-35-40-21-28-12-31-12-32-8-38-7...”
6. Intersperse new plaintext and dummy text values. p(1), d(1), p(2), d(2), ..., p(n), d(n):

“7-0-19-15-30-19-15-4-27-13-27-19-19-19-12-0-4-2-28-8-36-19-25-8-22-18-37-14-21-2-19-8-38-
12-36-18-35-16-40-20-21-18-28-4-12-4-31-18-12-6-32-20-8-8-38-19-7-0...”

7. Take the ever 10 characters of the text and separate them into blocks (in this step the
QQ has been added to reach a multiple of 10, this would already be included when encrypting a
full message interspersed evenly with the dummy text):

“7-0-19-15-30-19-15-4-27-13-27-19-19-19-12-0-4-2-28-8-36-19-25-8-22-18-37-14-21-2-19-8-38-
12-36-18-35-16-40-20-21-18-28-4-12-4-31-18-12-6-32-20-8-8-38-19-7-0-16-16...”

8. The first n characters are then moved from the front to the back:
a. for simplicity, the rotation of only one block is shown.
n = 4 (see first value in key)
“7-0-19-15-30-19-15-4-27-13” => “30-19-15-4-27-13-7-0-19-15"

9. This leaves us with the following ciphertext after the first key value (n) has been used to
shift ALL of the blocks in the message:

“30-19-15-4-27-13-7-0-19-15-12-0-4-2-28-8-27-19-19-19-22-18-37-14-21-2-36-19-25-8-36-18-3
5-16-40-20-19-8-38-12-12-4-31-18-12-6-21-18-28-4-38-19-7-0-16-16-32-20-8-8..."

a. We then move the first character to the back of the ciphertext to ensure that the blocks
are all different on our next scrambling:

B8-19-15-4-27-13-7-0-19-15-12-0-4-2-28-8-27-19-19-19-22-18-37-14-21-2-36-19-25-8-36-18-3
5-16-40-20-19-8-38-12-12-4-31-18-12-6-21-18-28-4-38-19-7-0-16-16-32-20-8-8...”

=>

“19-15-4-27-13-7-0-19-15-12-0-4-2-28-8-27-19-19-19-22-18-37-14-21-2-36-19-25-8-36-18-35-1
6-40-20-19-8-38-12-12-4-31-18-12-6-21-18-28-4-38-19-7-0-16-16-32-20-8-8- 1 ...”

10. We then repeat this process with the second numerical value of the key:

“19-15-4-27-13-7-0-19-15-12-0-4-2-28-8-27-19-19-19-22-18-37-14-21-2-36-19-25-8-36-18-35-1
6-40-20-19-8-38-12-12-4-31-18-12-6-21-18-28-4-38-19-7-0-16-16-32-20-8-8-30...”

a. (second key value is 8)
“19-15-4-27-13-7-0-19-15-12" => “15-12-19-15-4-27-13-7-0-19”
b. The new ciphertext is then shifted:

W8-12-19-15-4-27-13-7-0-19-19-22-0-4-2-28-8-27-19-19-8-36-18-37-14-21-2-36-19-25-12-12-1
8-35-16-40-20-19-8-38-4-38-4-31-18-12-6-21-18-28-8-30-19-7-0-16-16-32-20-8..."

=>

“12-19-15-4-27-13-7-0-19-19-22-0-4-2-28-8-27-19-19-8-36-18-37-14-21-2-36-19-25-12-12-18-3
5-16-40-20-19-8-38-4-38-4-31-18-12-6-21-18-28-8-30-19-7-0-16-16-32-20-8-J1§...”

11. This process is continued until the entire key has been iterated through once.

Dummy characters need to be added at the end of your plaintext before interspersing it
with the dummy text, causing your plain text to be 150 characters in length consistently. After
the dummy text has been added to the values of your plaintext, and interspersed, you will have
a ciphertext of 300 characters, no matter the initial message size. In addition to this, QQ will be
added after the end of your plain text, before the padding text, to ensure easy decryption and
additional security.

In conclusion, this method of encryption allows us to rely wholly on the key as our life
line of security. While the algorithm is quite obscure, the key ensures that the message is
practically impossible to decrypt without knowledge of the key. We feel that this makes the
encryption method simple and secure, allowing it to be easily implemented and used regularly.

Sincerely,
IMC
Citations:

Kerckhoffs, A. (1883). La Cryptographie Militaire.

sroup b I

OCRA, Inc Technical Report

We received a letter from OCRA, Inc, explaining a problem they had. They have had
several text messages containing sensitive and classified information sent to clients and rivals by
mistake. OCRA, Inc has asked us to write an encryption method so that the information passed
through text can remain classified to those outside of the company. Eventually, a team of
engineers will write software to automatically encrypt and decrypt these messages between
OCRA, Inc employees. The messages will remain encrypted to anyone outside the company
receiving these texts by mistake. We have created an encryption method by which 140 characters
will expand to close to 280 characters, and be represented solely by numerals. We want to make
sure that our instructions and method cannot be misinterpreted, so as to be clear to the engineers
who will eventually write this program. We would be very grateful if you would read this report,
and encrypt a message to us using our encryption method. This will help us check our
instructions. Thank you for your time and cooperation.

Here are the steps to our encryption method. This method requires an encryption key,
consisting of up to ten (10) alpha-numeric characters.

“Stapler” and “2wood”

are examples of two possible encryption keys. This is our first step.

Step two: We begin by creating a 6x6 matrix. The rows and columns are numbered based on the
following: We count the number of characters in our encryption key; that number is then the
label of the first row and column. We continue labeling the rows and columns in ascending
numeric order to 9. Once 9 is reached, if there are remaining rows and columns to label, we
continue numbering with 0, 1, 2, etc. For example:

“Stapler” has 7 characters. Thus, our matrix “2wood” has 5 characters, so our matrix
looks like this: looks like this:
7(8[9|0(1]2 5(6[7|8(9]0
7 5
8 6
9 7
0 8
1 9
2 0

Paul Jenkins
Typewritten Text
Group D

*Note: if we choose an encryption key with 10 characters, we begin labeling rows and columns
starting with 0, 1, 2, etc.

Step Three: We then start filling in our matrix. We begin by writing our encryption key, starting
in the first row, filling in left to right. We leave out any duplicate letters or numbers that may
appear in our key.

For example, our “stapler” matrix begins And our “2wood” matrix begins like this:
this way:
7189012 5/6|7/8]9]0
7{S|T|A|P|LJ|E 512 W|O|D
8|R 6
9 7
0 8
1 9
2 0

Step 4: we then completely fill our matrix, starting from a to z, omitting any letters in our
encryption key, then we fill in the numerals 0 to 9, also omitting any numerals occurring in our
key.

Our complete “stapler” matrix then looks And our complete “2wood” matrix looks
like this: like this:

7(8(9(0]|1 /|2 5/6[7[8(9]0
7/S|T|A|P|L|E 5|12/ W|O|D|A|B
8|R|IB|C|D|F |G 6| C/|E|F|G|H]|I
9|H|T|J|K| M|N 7(J|K|L|M|N|P
0J]O|Q|U |V IW[X 8|Q|R|[S|T|U|V
1]Y|Z]0|1]2]|3 91X|Y|Z]0]1]3
214]5]6]7]181]9 0145671819

Now that our matrix is completed, we can use it both to encrypt and decrypt messages.

Step 5: Encryption. We start with the message we want to encrypt. This message can contain
numbers, letters, and spaces. We will call this the “plaintext.” We start with the first character of
the plaintext, and proceed as follows:

* Ifthe character is a number or letter, we locate it on the matrix.

o We then replace this character with its location, referred to by first its row
number, then its column number. For example, the letter “t” in our “stapler”
matrix, is on row 7, and column 8. We will therefore replace “t” with “78” in our
ciphertext.

* If'the character is a space:

o We first look at the numbers labeling the rows and columns. We notice that there
are 4 numerals from 0 to 9 that we have not used to label the matrix. These
numerals are all designated to represent spaces in the plaintext. These are
interchangeable, so each time we come to a space, we pick one of these four
numerals at random. For example, a space in our plaintext, when encrypting using
our “stapler” matrix will be replaced by any of the following: 3, 4, 5, or 6. These
are the numerals not used in labeling the rows and columns of the “stapler”
matrix.

For example, if our plaintext is, “The duck swims on the lake,” and we are encrypting this
message using our “stapler” matrix, the resulting cryptext will be:

78977248009899057701989177407925789772471799072
If we are encrypting the same plaintext on our “2wood” matrix, the resulting cryptext will be:
88696645889657618756607887357792886966177597666

By using this encryption method, we have found a way to represent a common message
that looks nothing like the original, and would be quite hard for someone to decrypt without the
encryption key. We hope that this method can be efficiently coded to the cell phones of the
employees at OCRA, Inc. In this way, their information can remain confidential and within their
company. Any outside cell phones receiving an encrypted text will receive nothing but a string of
numbers, that they will not be able to easily cipher.

Group E
TO: OCRAI Board of Directors

1 | |
DATE: 11 September 2015

SUBJECT: Project 4

INTRODUCTION:

OCRAI has recently experienced many security breaches due to text messages received by unintended
recipients. The texts contained important company information that needs to remain confidential, such
as trade secrets. Fortunately, none of this classified information was disclosed to the media or our
competitors. Had such a thing occurred, the company would have experienced much embarrassment
and potential harm. In order to prevent such a catastrophe from arising, OCRAI has contracted with us

to devise a method for keeping all correspondence within the company secure.

PARAMETERS:
In order to make the encryption and decryption methods compatible with text messaging the following
parameters must hold within our method:
© It must take a text message of up to 140 characters (characters in 1 standard text message) and
output a text message of up to 700 characters (characters in 5 standard text messages).
@ It must have an encryption key less than or equal to 10 letters long.

© It must only contain symbols compatible with standard keyboards.

METHOD

Paul Jenkins
Typewritten Text
Group E

We have developed an encryption method in order to manipulate the plaintext of a message such that
those desiring to intercept the message will be unable to read it. The encryption method operates as

follows:

1. The application counts the letters in each word. (ex: cow = 3)

2. Each letter in the word is shifted forward by the number yielded in step 1. (ex: cow >> frz)
(note: If the end of the alphabet is reached, return to the beginning. tax >> wda)

3. Following this shift, the entire message is then shifted again by a random positive integer. This
step is the encryption key. (ex: If key =5, cow >> frz >> kwe)

4. The recipient’s application will then decrypt the ciphertext message.

In order to decrypt the message, the encryption method is reversed. For example, if the key = 3, then
shift each letter in the ciphertext back 3 steps in the alphabet. Following that, count the number of
letters in each word and perform step 2 above with shifting the letters backward in the alphabet instead

of forward.

With such a dynamic encryption method that changes with each word, the safety of OCRAI’s

communication and intellectual property is ensured.

CONCLUSION:

The protection of sensitive data and information is essential for the well-being of a business. The
cipher we have created involves shifting each letter according to the length of each word and then
shifting the entire alphabet depending on the encryption key. Through the use of this encryption
method, OCRATI’s confidential information will remain secure and the business will be protected from
potential embarrassment and harm.

Group F

Independent Mathematical Contractors, Inc.

136 TMCB
Provo, UT 84602
11 September 2015

OCRA Creative Recursive Acronyms, Inc.

485 Primality Way
Provo, UT 84604

Dear OCRAI,

Privacy when sending messages is very essential in any business. We are glad you came to us
to help in your time of need. We propose a simple Electronic Codebook (ECB) solution to your
encryption problem. It is a simple system that can work for text messages and can be extended
to handle your future needs.

The encryption method is simple. Each character is encoded in ASCII and can be represented
as two hexadecimal digits or eight binary digits (bits). A conversion table for many of the
commonly used characters is listed below.

Char Hex | Bin Char | Hex | Bin Char Hex Bin Char | Hex | Bin
<space> | 20 0010 0000 |5 35 00110101 | M 4D 0100 1101 | f 66 0110 0110
! 21 0010 0001 6 36 0011 0110 N 4E 0100 1110 | g 67 0110 0111
“ 22 0010 0010 |7 37 00110111 | O 4F 0100 1111 | h 68 0110 1000
23 0010 0011 | 8 38 0011 1000 | P 50 0101 0000 | i 69 0110 1001
$ 24 0010 0100 |9 39 00111001 |Q 51 0101 0001 | j 6A | 01101010
% 25 0010 0101 3A 00111010 |R 52 0101 0010 | k 6B 0110 1011
& 26 0010 0110 | ; 3B 00111011 |S 53 0101 0011 | | 6C 0110 1100
‘ 27 00100111 |? 3F 00111111 | T 54 0101 0100 | m 6D | 01101101
(28 0010 1000 | @ 40 0100 0000 | U 55 0101 0101 | n 6E 0110 1110
) 29 00101001 | A 41 0100 0001 |V 56 0101 0110 | o 6F 0110 1111
* 2A 0010 1010 | B 42 0100 0010 | W 57 0101 0111 | p 70 0111 0000
+ 2B 0010 1011 | C 43 0100 0011 | X 58 0101 1000 | q 71 0111 0001
, 2C 00101100 | D 44 0100 0100 |Y 59 01011001 | r 72 0111 0010
- 2D 00101101 |E 45 01000101 | Z 5A 0101 1010 | s 73 0111 0011
2E 0010 1110 | F 46 0100 0110 |\ 5C 0101 1100 | t 74 0111 0100

Paul Jenkins
Typewritten Text
Group F

Paul Jenkins
Typewritten Text

/ 2F 0010 1111 G 47 0100 0111 5F 0101 1111 75 0111 0101
0 30 0011 0000 H 48 0100 1000 61 0110 0001 76 0111 0110
1 31 0011 0001 I 49 0100 1001 62 0110 0010 77 0111 0111
2 32 0011 0010 |} 4A 0100 1010 63 0110 0011 78 0111 1000
3 33 0011 0011 K 4B 0100 1011 64 0110 0100 79 0111 1001
4 34 0011 0100 L 4C 0100 1100 65 0110 0101 7A 0111 1010

For example, the word “Text” would be written as seen below:

5 4 6 5 7 8 7 4 Which could then be converted to the
following:
0101 0100 0110 0101 0111 1000 0111 0100 This is the code of the plaintext.

To encrypt the plaintext, we need a key which consists of four hexadecimal digits (labeled Hex
in the chart). A table listing the hexadecimal digits with their binary representations is listed
below. In our example, we use 74AF as our key.

Hex | Bin Hex | Bin Hex | Bin Hex Bin

0 0000 1 0001 2 0010 3 0011
4 0101 5 0101 6 0100 7 0111
8 1000 9 1001 A 1010 B 1011
C 1100 D 1101 E 1110 F 1111

We write the key in terms of bits.
7 4 A F
0111 0100 1010 1111

We write the key under the plaintext and keep repeating the key until we reach the end of the
text.

0101 0100 0110 0101 0111 1000 0111 0100 plain text written as bits

0111 0100 1010 1111 0111 0100 1010 1111 The key repeated

Now we perform a bitwise exclusive-or or add each column using modulo 2. (In other words,
0+0=2, 1+1=0, 0+1=1+0=1)

0101 0100 01100101 0111 1000 0111 0100 plain text written as bits
0111 010010101111 0111 010010101111 The key
0010 0000 1100 1010 0000 1100 1101 1011 This is now the ciphertext.

To decrypt the message, we will write the key beneath and add the digits mod2 again.

0010 0000 1100 1010 0000 1100 1101 1011 The ciphertext.
0111 010010101111 0111 010010101111 The key
0101 0100 01100101 0111 1011 0111 0100 This is the original plain text written as bits.

Using our key in table 1, we can convert the bits back into hexadecimal
54 65 78 74 and then convert those into characters and we get
T e x t

So, even if the encryption method is known, your message will remain secure as long as no one
knows they key. In addition, our encryption method can be strengthened by increasing the key
size. It can also be extended to provide encryption for any electronic communication. Finally,
with a little added complexity, we can convert our encryption algorithm to Cipher Block Chaining
(CBC) to allow even more secure encryption for audio and image messages. We hope you
return to us for your future encryption needs.

Sincerely,

Independent Mathematical Contractors, Inc.

Cryptography Report

A report on

09.010.2015
Math 485 - Cryptography

Paul Jenkins
Typewritten Text

Group G

INTRODUCTION

We were presented with the problem of keeping communications secure between the
OCRA Creative Recursive Acronyms, Inc. We were asked to create a cryptosystem, and
likewise an encryption key, for the engineers at OCRAI to create a mobile application to
encrypt text communication. The requirements for our cryptosystem stated that given
a plaintext of standard text message size, the ciphertext must be between 500 to 700
characters. In addition, the ciphertext should be able to be typed on a standard
keyboard. We were also asked that the encryption key be no longer than 10 letters
long, should the key be using a sequence of letters; the reason behind this is that it
would slow down the processing power of the application.

OUR CRYPTOSYSTEM - THE PROCESS OF OBTAINMENT AND HOW IT WORKS

Our hope for our cryptosystem was that it would be one that we would find secure and
reliable. We were trying to find a cryptosystem that would take some time to decrypt,
but wouldn’t be too overbearing for the application’s processing power. We were also
hoping to create a system where the key could be manipulated and not very
predictable, thereby creating a complex manner in which to encode a message.

We first considered ways to use a sequence of letters as our key. This design involved
assigning a unique sequence of five letters to each letter of the alphabet. The concern
we had with this method was that the assighment was very predictable and difficult to
randomize, and thus unable to securely protect the messages. Likewise, it did not allow
for a wide variety of encryption keys, which meant that if the key was discovered,
there would a limited amount of keys to try before every key would be broken.

We also considered a method that involved taking an irrational number and assigning
the values of each digit placement to a unique letter in the alphabet. However, as we
tried this method, we realized that we found ourselves in a similar situation to our first
method; the number of possible numerical values that we could truly use would limit
the amount of encryption keys. We also realized that this method would be very
difficult to manipulate, defeating one of the purposes we were aiming to achieve.

Another method we had considered was using a displacement key. This particular
method would allow for better manipulation. As we experimented with this method,
we realized that by using a displacement key, the amount of time it would take to

encrypt or decrypt a short message was more than intended for the purposes of this
particular project. The reason behind this is based on the fact that this particular
method requires the decryptor to test every possible displacement for consistencies.
This method would create a very secure key; however, as already stated, it would be
outside the parameters of what this particular assignment entailed.

After the above attempts, we decided to use a cryptosystem that uses random digit
tables to encrypt and decrypt our codes. The idea behind us using a random digit table
was that it had the potential to securely encrypt data and the messages we would send.
The use of a random digit table for our cryptosystem follows a simple process. On the
left hand side of the random digit table, like the one we have attached to the end of this
particular report, is a column titled lines. We would choose a line, and then select an
entry. Depending on the digit table, there will be more entries per line or fewer. Our
example table, as you will notice, contains eight entries per line. After selecting a line
and an entry on that line, the encryptor would begin to assign a plaintext letter to each
unique five digit value, starting with a. The next unique five digit value would be
assigned to b, the next to ¢, and so forth until the whole alphabet was covered. This
method we are describing involves reading from left to right, starting on the selected
row and entry. The key will totally depend on which row was used and which entry it
starts on. Especially with unique random digit tables, this method can prove to be a bit
of a challenge.

CONCLUSION

In summary, we solved the problem of secure text communication by use of a random
digit table to generate an encryption key. This method satisfies the ciphertext
character limit, in addition to producing multiple encryption keys simply by choosing a
new line on the table or by generating a completely different table. The application
design should be able to select a line on a random digit table, and assign unique five
digit values to each letter in the alphabet, starting with a. In the decryption of the text,
the same line used to encrypt the message should be used. In utilizing our design to
create the mobile application, we encourage the engineers to code and program the
generation of various random digit tables to heighten the security of text
communication. The reason of this would be to have unique random digit tables built
into the programming, ensuring that tables will remain private to the company not for
the public use.

87136433675589233063622245602795052545804184255892558924336787136148635458
07518655892290779576147052871364184256027470526222456027558922907756027622
24558928159854580710359505295761138734184281507290777518675186545808186862
22456027751865458095761470525458095761751866222429077470529505295761138735
58928159862224560277518654580616837359229077957614705290908545808159895761
33063545802907755892622246168356027622243306361683815989505295761622245589
26222461683560279505287136622245589243367957614705295052616832907733063622
24616832907775186751866222447052148637518629077616837359275186545803306341
84255892

12975945910036002428555888194043563130489676700360003609459112975335861304
85171900360477811325806928129759676781940069285558881940003604778181940555
88003604109813048238224356313258707089676745144477815171951719130483596300
36081940517191304813258069281304813258517195558847781069284356313258707080
03604109855588819405171913048791774839447781132580692856934130484109813258
12428130484778100360555887917781940555880242879177410984356313258555880036
05558879177819404356312975555880036094591132580692843563791774778102428555
8879177477815171951719555880692833586517194778179177483945171913048
024289676700360

33906845686349494165465148750384568063401005671379264115719597762977620634
08596897762063408750345984100569281306340465146349446514875037655097762928
13054819429294165845685719557195977629483185968465149483185968264117137963
49446514370330548110056713794221184568054816349494165977624221192813465149
42929776246514634949429284568948312641197762977625083063494928139776233906
97762571950548192813977624598484568928130634046514948318596810056713799281
38596810056845685719584568875036349497762845689429294165977629281387503465
14875036349410056941659776257195422111005663494941659776292813875038750397
76297762634949416597762928139776245984845689281306340

T-4 Tables

TABLE B

Random digits
Line
101 19223 95034 05756 28713 96409 12531 42544 82853
102 73676 47150 99400 01927 27754 42648 82425 36290
103 45467 71709 77558 00095 32863 29485 82226 90056
104 52711 38889 93074 60227 40011 85848 48767 52573
105 95592 94007 69971 91481 60779 53791 17297 59335
106 68417 35013 15529 72765 85089 57067 50211 47487
107 82739 57890 20807 47511 81676 55300 94383 14893
108 60940 72024 17868 24943 61790 90656 87964 18883
109 36009 19365 15412 39638 85453 46816 83485 41979
110 38448 48789 18338 24697 39364 42006 76688 08708
111 81486 69487 60513 09297 00412 71238 27649 39950
112 59636 88804 04634 71197 19352 73089 84898 45785
113 62568 70206 40325 03699 71080 22553 11486 11776
114 45149 32992 75730 66280 03819 56202 02938 70915
115 61041 77684 94322 24709 73698 14526 31893 32592
116 14459 26056 31424 80371 65103 62253 50490 61181
117 38167 98532 62183 70632 23417 26185 41448 75532
118 73190 32533 04470 29669 84407 90785 65956 86382
119 95857 07118 87664 92099 58806 66979 98624 84826
120 35476 55972 39421 65850 04266 35435 43742 11937
121 71487 09984 29077 14863 61683 47052 62224 51025
122 13873 81598 95052 90908 73592 75186 87136 95761
123 54580 81507 27102 56027 55892 33063 41842 81868
124 71035 09001 43367 49497 72719 96758 27611 91596
125 96746 12149 37823 71868 18442 35119 62103 39244
126 96927 19931 36089 74192 77567 88741 48409 41903
127 43909 99477 25330 64359 40085 16925 85117 36071
128 15689 14227 06565 14374 13352 49367 81982 87209
129 36759 58984 68288 22913 18638 54303 00795 08727
130 69051 64817 87174 09517 84534 06489 87201 97245
131 05007 16632 81194 14873 04197 85576 45195 96565
132 68732 55259 84292 08796 43165 93739 31685 97150
133 45740 41807 65561 33302 07051 93623 18132 09547
134 27816 78416 18329 21337 35213 37741 04312 68508
135 66925 55658 39100 78458 11206 19876 87151 31260
136 08421 44753 77377 28744 75592 08563 79140 92454
137 53645 66812 61421 47836 12609 15373 98481 14592
138 66831 68908 40772 21558 47781 33586 791717 06928
139 55588 99404 70708 41098 43563 56934 48394 51719
140 12975 13258 13048 45144 72321 81940 00360 02428
141 96767 35964 23822 96012 94591 65194 50842 53372
142 72829 50232 97892 63408 77919 44575 24870 04178
143 88565 42628 17797 49376 61762 16953 88604 12724
144 62964 88145 83083 69453 46109 59505 69680 00900
145 19687 12633 57857 95806 09931 02150 43163 58636
146 37609 59057 66967 83401 60705 02384 90597 93600
147 54973 86278 88737 74351 47500 84552 19909 67181
148 00694 05977 19664 65441 20903 62371 22725 53340
149 71546 05233 53946 68743 72460 27601 45403 88692
150 07511 88915 41267 16853 84569 79367 32337 03316

Tables T-5

TABLE B

Random digits (continued)

Line

151 03802 29341 29264 80198 12371 13121 54969 43912
152 77320 35030 77519 41109 98296 18984 60869 12349
153 07886 56866 39648 69290 03600 05376 58958 22720
154 87065 74133 21117 70595 22791 67306 28420 52067
155 42090 09628 54035 93879 98441 04606 27381 82637
156 55494 67690 88131 81800 11188 28552 25752 21953
157 16698 30406 96587 65985 07165 50148 16201 86792
158 16297 07626 68683 45335 34377 72941 41764 77038
159 22897 17467 17638 70043 36243 13008 83993 22869
160 98163 45944 34210 64158 76971 27689 82926 75957
161 43400 25831 06283 22138 16043 15706 73345 26238
162 97341 46254 88153 62336 21112 35574 99271 45297
163 64578 67197 28310 90341 37531 63890 52630 76315
164 11022 79124 49525 63078 17229 32165 01343 21394
165 81232 43939 23840 05995 84589 06788 76358 26622
166 36843 84798 51167 44728 20554 55538 27647 32708
167 84329 80081 69516 78934 14293 92478 16479 26974
168 27788 85789 41592 74472 96773 27090 24954 41474
169 99224 00850 43737 75202 44753 63236 14260 73686
170 38075 73239 52555 46342 13365 02182 30443 53229
171 87368 49451 55771 48343 51236 18522 73670 23212
172 40512 00681 44282 47178 08139 78693 34715 75606
173 81636 57578 54286 27216 58758 80358 84115 84568
174 26411 94292 06340 97762 37033 85968 94165 46514
175 80011 09937 57195 33906 94831 10056 42211 65491
176 92813 87503 63494 71379 76550 45984 05481 50830
177 70348 72871 63419 57363 29685 43090 18763 31714
178 24005 52114 26224 39078 80798 15220 43186 00976
179 85063 55810 10470 08029 30025 29734 61181 72090
180 11532 73186 92541 06915 72954 10167 12142 26492
181 59618 03914 05208 84088 20426 39004 84582 87317
182 92965 50837 39921 84661 82514 81899 24565 60874
183 85116 27684 14597 85747 01596 25889 41998 15635
184 15106 10411 90221 493717 44369 28185 80959 76355
185 03638 31589 07871 25792 85823 55400 56026 12193
186 97971 48932 45792 63993 95635 28753 46069 84635
187 49345 18305 76213 82390 77412 97401 50650 71755
188 87370 88099 89695 87633 76987 85503 26257 51736
189 88296 95670 74932 65317 93848 43988 47597 83044
190 79485 92200 99401 54473 34336 82786 05457 60343
191 40830 24979 23333 37619 56227 95941 59494 86539
192 32006 76302 81221 00693 95197 75044 46596 11628
193 37569 85187 44692 50706 53161 69027 88389 60313
194 56680 79003 23361 67094 15019 63261 24543 52884
195 05172 08100 22316 54495 60005 29532 18433 18057
196 74782 27005 03894 98038 20627 40307 47317 92759
197 85288 93264 61409 03404 09649 55937 60843 66167
198 68309 12060 14762 58002 03716 81968 57934 32624
199 26461 88346 52430 60906 74216 96263 69296 90107
200 42672 67680 42376 95023 82744 03971 96560 55148

Independent Mathematical Contractors, Inc.

Group H

136 TMCB
Provo, UT 84602

September 9, 2015

OCRAI

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way

Provo, UT 84604

Security Cipher Technical Report

Paul Jenkins
Typewritten Text
Group H

Paul Jenkins
Typewritten Text

Introduction:

We are technical contractors who have been commissioned by your company to create
a nontrivial method of encrypting plaintext. Your company has recently had several major
security breaches when sending text messages, so it is our job to make sure that this doesn’t
happen anymore. After creating this key, your engineers will use our cryptosystem to create a
mobile application to encrypt all messages before they are sent. This cryptosystem we created
roughly doubles the number of characters. We have created the following method of
encrypting plaintext, and believe that it will help protect the sensitive information contained

in your text messages.

Solution:

When faced with the task of encrypting your data, we had two distinct ideas. The first
idea was to use a cipher that incorporated a system based on the properties of odd and even
numbers. We ultimately decided that this method wasn't as secure as our second option,
which is the one we decided to use. As we worked on improving security, our basic

encryption method stayed the same, but we altered the complexity of the key.

The encryption method that we designed incorporates a table of all the desired letters
and symbols. The table that we used includes, in this specific order: letters A-Z (in

alphabetical order), space, “.”, “,”, and “?” . The way that the letters and symbols are

inputted into the table is determined by the key given.

A generic example of the table is given below:

1 2 3 4 5 6
A B C D E F
G H I J K L
M N @] P Q R
10 S T U \Y w X
11 Y z space ?

Each column and row is labeled with a number and it is these numbers that are paired
together (column, row) and used to encrypt the letters and symbols of the plaintext. For
example, the letter A would be represented as 17. When writing the ciphertext, no spaces are
included in between the numbers because spaces are encrypted as well. Using the above
table, the phrase "Have a good day." would be
28174105731117311183939473114717111411. A code without spaces increases the strength

of the encryption and makes it more difficult to crack without the key.

The key of the code is essential to the security of the encryption method and allows
for multiple variations of the encryption table used. An example key is F28LU35216. There
are two distinct parts to the key. The first half tells the coder how to organize the encryption
table. The first character in the key is the first letter put into the encryption table, and the
number that comes next in the key is the table cell to put that letter in. Our example key

would assign the letter F to cell 28 in the encryption table.

filled into the table. The first letter can be either R (right) or L (left) which determines the

The two letters that come next decide which direction the letters (in order) will be

4 5 6
10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30

direction along the row. The L in our example key means that we are moving right to left
along the row, and the letter “G” would be put in cell 27, letter “H” would be put in cell 26,
etc. The second letter can be U (up) or D (down), which determines how to move from one
row to the next. In our example key, the U means that letter “J”” would go in cell 24, letter

“K” would go in cell 23, etc. Here is how the first half of the key would change our table:

space

The second half of the key rearranges, or permutes, the columns of the encryption
table. The first number in the second half of the key is the column number that is moved into
the first column of the encryption table, the second number is moved into the second column
and so forth. The column number that is not included in the permutation is placed in the last

column. For our example, column 3 will be the first column.

3 5 2 1 6 4
A B C ?
Y W Z space \% X
S Q T U P R
M K N (@) J L
G E H I D F

We then change the columns back to the original numbering (1-6) and we now have

the final encryption table. Our final table for this encryption key would be:

1 2 3 4 5 6
A , B C . ?
Y W Z space \% X
S Q T U P R
10 M K N O J L
11 G E H | D F

We then use this encryption table to encode the message. Using this new table, the

phrase "Have a good day."” would be: 3111758211487111141041051148511171857.

In order to decrypt this message, the numbers will have to be read as pairs or triples.
A number between 1 and 6 will always come before a number from 7 to 11, which keeps 111

from being interpreted erroneously.

Conclusion:

As can be seen, the technique used to manipulate our data is far from trivial. It
involves several permutations of an original chart, and then relies on those permutations to
encode (and decode) the text. If even one column is switched erroneously or one number is
placed out of order, the entire system will be broken and the individual is unlikely to
understand the encoded message being sent. In addition, the fact that each letter has the
possibility of being represented by two or three numbers, depending on its position in the
table, makes the code stronger. It will be initially unclear if the string of characters represents
words, letters or numbers, etc. The increased length of these messages because of the
multiple numbers used for each plaintext character will increase the number of possible
solutions to our code, and will thereby increase the difficulty of the problem to be solved. At
ten characters, the keys are within the bounds of your processing and monetary limits. We

believe this will be well worth the added security of this difficult code. We hope that your

team will be satisfied with this and that you will let us know about any feedback or concerns

you have at your earliest convenience.

Group |
IMC Independent Mathematical Contractors, Inc.
136 TMCB
Provo, UT 84602

11 September 2015

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way
Provo, UT 84604

Dear OCRAI:

We received your letter concerning your request for a method of preventing security breaches of
text messages sent by your employees. We have put together a method for encrypting plaintext
English messages that we believe will protect the security and confidentiality of your company’s
information. Included in this report is a description of the method for encrypting messages, a
description of the method for choosing an encryption key, and three sample ciphertexts
encrypted using the method described with three different encryption keys.

Our method of encryption randomly assigns three two-digit numbers to each of the characters
letters A through Z (not case-sensitive), space, period, comma, and question mark, for a total of
30 characters. (Any numbers communicated through the method must be spelled out.) To choose
the encryption key, we first assign three two-digit numbers from 00-89 to each of the 30
plaintext characters. This should be done randomly either by hand, with a random number
generator, or with a computer program we have created which is also available for purchase.
Once the encryption key is chosen, we substitute each character in the plaintext with one of the
three corresponding two-digit ciphertext numbers. This is done randomly by hand or with a
random number generator. The plaintext is then properly encrypted and the ciphertext is ready to
be sent. The resulting ciphertext should appear as a string of numbers without spaces.

For example, say we wish to encrypt the message “Robert S. Andrews” using this method. Our
program generates the following encryption key:

Plaintext = Ciphertext
A - 00, 30, 60
B->01,3161
D - 03, 33, 63
E > 04, 34, 64
N - 15, 45, 75

Paul Jenkins
Typewritten Text
Group I

O - 16, 46, 76

R > 18,48, 78
S>19,49,79

T - 20, 50, 80

W - 23,53, 83
Space - 26, 56, 86
Period - 28, 58, 88

After replacing each plaintext character with a ciphertext number (randomly chosen of the three),
the ciphertext could appear

“4816610418802679585600453378462319 or “18760134782056198886301503485379”

depending on which of the three two-digit ciphertext numbers is chosen for each plaintext
character.

We believe that this method will secure communication over employees’ mobile phones. We
have decided on this method because it is more secure than a simple shift cipher. There are three
numbers for each letter, making it difficult to discover all the possible numbers that represent a
certain letter. Furthermore, the numbers that are chosen do not have to be in any order. For
example, A > 1, B = 2, etc. The numbers assigned are random with no pattern that is easily
discovered. Finally, space also has numbers associated with it, meaning that a person cannot use
spaces to find where words end and begin, which would make the ciphertext easier to decrypt.

Yours sincerely,

Group J
IMC
Independent Mathematical Contractors, Inc.
136 TMCB
Provo, UT 84602

11 September 2015

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way
Provo, UT 84604

Dear OCRALI,

We received your inquiry about a solution to your security breaches. We recognize that
the problem was that company employees were unintentionally and erroneously sending text
messages — which contained sensitive company information and trade secrets — to the wrong
recipients. We also recognize the potential for this to cause acute embarrassment to the company
and to harm future revenue streams if received by the wrong person. We have faced the problem
of making sure that sensitive information sent out to employees through text messages is secure
and protected. This is why we have created a special cipher that would be easy to implement as
well as painless to understand for less cipher-savvy workers. This cryptosystem can be used to
create a mobile application which will encrypt all text messages before being sent and decrypt
any messages received from other company employees as desired.

Our cryptosystem changes a plaintext message into a string of numbers. The cipher uses a
random assignment of numbers to letters. We used a random number generator to assign the
numbers 11 through 36 to the letters A through Z. The assignment is as follows: A=11, B=17,
C=14, D=16, E=34, F=24, G=29, H=18, 1=19, J=35, K=12, L=28, M=20, N=31, 0=33, P=22,
Q=30, R=26, S=25, T=27, U=15, V=36, W=32, X=13, Y=21, Z=23. We first multiply each of
the above numbers by the randomly chosen encryption key number. This number should be a
two digit prime integer. When the multiplication results in a three digit number instead of a four
digit number, we add a zero at the beginning. Now, all of our letters are represented by a four
digit number. We then substitute the number representation for each letter in our plaintext. We
delete any spaces that may be between letters or words and get rid of all punctuation. Thus, we
are left with a ciphertext that is a string of numbers.

To decrypt a message, we must know the encryption key, a two digit prime integer. We
first separate the string of numbers of the ciphertext into four digit numbers. This can be done by
putting a space after each set of four numbers. We then divide each of those numbers by the
encryption key, which should always result in a two digit number between 11 and 36. We then
substitute the assigned letter (which can be found above) for each two digit number. Then, we
use common sense to group the letters into meaningful words and sentences. We now have the
plaintext message.

We have created a cryptosystem and cipher that can be used with any randomly chosen
encryption key to encrypt text messages sent among employees. This system is small enough that
a text message (of up to 140 characters) doesn’t result in an encrypted message of more than 5
text messages (or 720 characters); however, it is also secure enough that someone without the
encryption key would not be able to decrypt the message and intercept the information. It makes

Paul Jenkins
Typewritten Text
Group J

it so that any information leaked on accident will not be understood and taken advantage of by
the people who could accidentally receive the text. After the careful and thoughtful work we
have invested into this project, we expect that the code will start to pay back through the
impossibility of breaking it by anyone who doesn’t have the key. This makes us feel secure and
satisfied with the work we accomplished. Our code will be easy to implement and will be able to
be used to solve the problem of information insecurity of text messages sent within your
company.

Sincerely,

Encryption specialists
IMC Inc.

Group K

IMC

Independent Mathematical Contractors, Inc.
136 TMCB
Provo, UT 84602

10 September 2015

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way
Provo, UT 84604

Dear OCRAL:

In response to your request for a nontrivial method of encrypting plaintext English messages
we have established a system of encryption which is not only compatible with a standard
computer or mobile device keyboard, but benefits from the use.

Our company took a long look at the text messages your members sent to the wrong
recipients and devised a system which could have prevented the erroneous breach in security.
However, instead of focusing on the messages themselves, our engineers noticed something far
more trivial: The time stamp. The time stamp serves as a marker of when the text message was
sent, but we created a second way to utilize it: An encryption key.

A time stamp contains three to four numbers indicating the time of the text message’s
departure as well as an acronym indicating whether the text left “ante meridiem” or “post
meridiem.” We have utilized these numbers to create a series of one thousand four hundred and
forty unique tables which may each individually encrypt the English alphabet and by extension,
your company’s private conversations.

We do this by constructing the same number of columns in a table as there are hours in the
time stamp. The rows begin at the number of minutes and proceed by repeatedly adding the
amount contained in the ones place.

For example, if the time stamp read 4:17 AM then four columns would be constructed.

We would then construct the first row, having it correspond to the number of minutes, in this
case, seventeen.

17

Paul Jenkins
Typewritten Text
Group K

After which, we begin to add seven to form new rows until we have created enough cells to
hold all twenty-six letters of the English alphabet. This pattern would remain the same for any
table; for example the rows for 1:03 would increase by increments of three, 2:55 would increase
by five, and 7:00 would increase by ten as would any other time stamp ending in zero.

1 2 3 4

17
24
31
38
45
52
59

Each of these elements can now hold a number which we create by adding the value of its
column and row. For example, the cell at the intersection of column three and row thirty-one
would give thirty-four, as we see below.

1 2 3 4
17 | 18 | 19 | 20 | 21
24 | 25 | 26 | 27 | 28
31 | 32 | 33 | 34 | 35
38 | 39 | 40 | 41 | 42
45 | 46 | 47 | 48 | 49
52 | 53 | 54 | 55 | 56
59 | 60 | 61 | 62 | 63

After this we assign a letter to each number, beginning at A, going left to right and down
until we reach Z.

112 3] 4
7| A | B | C| D
24 | E | F | G | H
3 | 1 | J K| L
B | M| N|O| P
5| Q R | s | T
52 | U | V| W| X
59 | Y | Z

However, this is only if the time stamp is ante meridiem. Instead if the time stamp is post
meridiem then the last column begins at one and the last row begins with the minute digits. For
example 4:17 PM would look like this:

4 3 2 1

59 | 63 | 62 | 61 | 60
52 | 56 | 55 | 54 | 53
45 | 49 | 48 | 47 | 46
38 | 42 | 41 | 40 | 39
31 | 35 | 34 | 383 | 32
24 | 28 | 27 | 26 | 25
17 1 21 | 20 | 19 18

So if Paul Revere were to send Benjamin Franklin a text message at 4:17 AM reading “The

Red Coats are coming!” this encryption method would change that to read
“49,28,25,47,25,21,20,41,18,49,48,18,47,25,20,41,39,32,40,27”

With the time stamp of 4:17 AM on his text message, Benjamin Franklin would be able to
construct a matrix identical to the one above and therefore be able to decrypt Paul Revere’s
message by attaching a preassigned letter to each number. Naturally, the time it takes to
construct, encrypt, and send a message would not allow for the above situation to happen simply
through human ability. However, a mobile application with the encryption key would easily be
able to send, encrypt, and decrypt a text message within a matter of seconds.

Due to the nature of the construction it is almost impossible to decrypt the messages without
both the encryption method as well as the key. Furthermore, as there are no punctuation
markings besides commas in between letters there would be little way to distinguish one word
from another.

Unfortunately in some of the tables duplicate numbers arise as in the matrix we construct for
12:01 AM:

1 2 3 4 5 6 / 8 9 10 | 11 | 12
1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13
2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14
3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

1 2 3 4 5 6 / 8 9 10 | 11 | 12
1 A B C D E F G H | J K L
2 M N O P Q R S T U V | W | X
3 Y Z

It is clear that the above situation would engender difficulty decrypting a message as multiple
letters map to one number, such as C, N, and Y all mapping to four. We solved this problem by
including first one then two apostrophes as duplicates arise as is clear from the table below:

1 2 3 4 5 6 7 8 9 10 | 11 | 12
1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13
2 3 4 S’ 6’ I 8’ 9 100 |11 | 120 | 137 | 14
3 4” 5” 6” 7” 8” 9” 10” 11” 12” 13” 149 15

So if the above text message from Paul Revere would have been sent at 12:01 AM instead it
would read:

“10°,9,6,8°,6,5,4,5°,2,10°,9°,2,8°,6,4,5°,3°,10,4°,8”

Thus, as you can see, we have developed a complex yet elegant method of substituting
numbers for letters using merely the time stamp on your employees’ text messages. Moreover,
the largest possible—yet unlikely—output from one hundred forty plaintext characters is six
hundred ninety-nine ciphertext characters, less than seven hundred characters and therefore
within all of your requirements for the encryption method.

Finally, if we work by Kerckhoff’s principle we may assume that your adversaries will know
of this system, but not necessarily the encryption key. Therefore, there will be no mention of the
time stamp as the necessary key; instead we will maintain that the key is a random series of three
or four numbers necessary to decrypt the text message. Only the creators of the mobile

application will need understand the significance of the time stamp to the encryption, anyone
else will simply identify it as an ordinary time stamp.

We hope this encryption method meets with your approval and wish to continue to do
business with your company in the future.

Sincerely Yours,

Math 485
Project 1

Group L
11 September 2015

OCRAI

OCRA Creative Recursive Acronyms, Inc.
485 Primality Way

Provo, UT 84604

In today's world, it is simple to send and receive messages and other data. Cell phones,
computers with email capability, and tablet devices with an internet connection are ubiquitous.
Perhaps because of the easiness of data transfer and the fact that it is now an everyday part of
most people's lives, it seems that more and more often sensitive data is made available to
people who were not intended to read it. Our client, OCRAI, has been subject to potential leaks
of sensitive company data and trade secrets through erroneous text messaging by company
employees. We will solve this problem by developing an encryption/decryption process that can
be implemented on the phones of all employees of OCRALI, resulting in the secure encryption of
all text messages sent and the proper decryption of all messages encrypted by this process.

We begin the encryption of a message with a discussion of which characters are allowed in a
plaintext message. In the system we have chosen, the letters of the alphabet (no distinction
between uppercase and lowercase), spaces, commas, periods, exclamation points, and
guestion marks may all be encrypted. We will walk through how to use this system by applying
the cipher on an example block of plaintext. The plaintext we will use is,

HOW ARE YOU TODAY, FRIEND?

The use of Comic Sans font throughout the rest of this report will indicate either plaintext or
ciphertext.

Our first step to encrypt this message is to choose our key. We will use the 6-digit numeric key,
(972658). Next we write the integers that correspond to each character in the plaintext in the

line above the block to be encrypted.

The integers corresponding to each character are given by the following table.

PT/CT Int PT/CT Int PT/CT Int PT/CT Int
A 0 I 8 Q 16 Y 24
B 1 J 9 R 17 Z 25
C 2 K 10 S 18 _ 26

Paul Jenkins
Typewritten Text
Group L

Paul Jenkins
Typewritten Text

Math 485
Project 1
D 3 L 11 T 19 , 27
E 4 M 12 U 20 . 28
F 5 N 13 \Y 21 ! 29
G 6 O 14 W 22 ? 30
H 7 P 15 X 23 Not used | Not used

Thus we would write,

71422260174262414202619143024272651784133 30
HOW _ARE_YOU_ TODAY , _FRIEND?

Let each number be p,, where n is the index of characters starting with the first character of the
message as 1.

We then process these numbers representing the characters of the message by using the
following formula to obtain the encrypted number.

Cn = 2(kn) + 3(pn)(kn+1) (mOd 31)
Where k_n is the nth digit of the key and k, =k, = k,; = k... etc. In general, k ., = k|
Thus, p, = 7 which represents the letter H is changed to
c, = 2%(9) + 3*(7)*(7) (mod 31)
=165 (mod 31)
=10 (mod 31)

p, is changed to

c, = 2%(7) + 3*(14)*(2)
=5 (mod 31)

Continuing to change each of the numbers, we end up encrypting our original message as
10-5-28-30-10-10-9-15-2-5-25-5-14-5-27-12-28-1-6-13-0-8-16-0-12-1-17
Writing the message as the characters represented by these numbers we have

kf.?kkjpcfzfof,m.bgnaigambr

Math 485
Project 1

At this point, our encryption is complete. To decrypt this message we simply work in reverse or
what we just did to encrypt the message. We would begin by rewriting the encrypted message
in a string of integers from 0-30 as in the table above. As we would expect, this results in the
string of numbers,

10-5-28-30-10-10-9-15-2-5-25-5-14-5-27-12-28-1-6-13-0-8-16-0-12-1-17

Knowing the formula to change a plaintext character into a ciphertext character is given by
¢, = 2(k,) + 3(p,)(k,.;) (mod 31)

We can rewrite this in terms of the plaintext integer, p,

Py = = (¢ = 2kn) (mod 31)

This gives us a method of changing the ciphertext integers into the plaintext integers, though it
does require us to find the multiplicative inverse of 3k_,, for each n. Since we have 31
characters and 31 is a prime number, the gcd(3k_,,,31) will always be 1, which makes this
division possible.

n+1?

Plugging our first ciphertext integer, ¢, = 10, into the given decryption formula, we obtain
p, = (1/21)*(10 - 2*9) (mod 31)
To find the multiplicative inverse of 21, we use the extended Euclidean Algorithm".

31=1(21) + 10
21=2(10) + 1

Working backwards, we find
1=21-2(10)

1=21-2(31-21)

1=23(21)-2(31) =>3(21) =1+ 2(31)

Thus the multiplicative inverse of 21 (mod 31) is 3. Using this result, we obtain

p, = 3*(10-18) (mod 31) = -24 (mod 31) = 7 (mod 31)

' See https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm to learn how to use this algorithm

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Math 485
Project 1

So p, = 7 = H. For our second ciphertext integer (c, = 5) we have
p, = (¥6)*(5 - 2*7) (mod 31) = -5(-9) (mod 31) = 45 (mod 31) = 14 (mod 31)
Sop,=14=0.

Continuing this pattern, we can decrypt the whole message and get back our original plaintext,
HOW ARE YOU TODAY, FRIEND?

As we have shown, with our system it is a straightforward matter to encrypt text messages. The
implementation of this system on each phone of the employees of OCRAI should be simple.
Without the key, recipients of these messages will require significant computing power to break
the encryption. Thus unintended recipients of messages containing sensitive company
information- who will be without the decryption protocol and key- will not be able to read the
messages. Please direct any questions, comments, or concerns to the IMC team found at 136

TMCB, Provo, UT 84602 or through email to ||| G o

Group N

Cryptography Project

There exists a problem in this world. If things of value are put in the open, people are likely to
steal them. Therefore, we must take security measures to ensure that those things do not happen.
Furthermore, in recent history, the problem of keeping valuable information secret has been getting
harder and harder. Therefore, we have created a cryptographic system that, with limited processing
power, encrypts a message of ASCII characters using a key of length nine, expanding the length of the
original message by five.

Before encrypting, take the plain text message and convert it into its bits. Also, take each
character of the key and convert it into the bits (but keep each character’s bits separate). Reference the
modified ASCII table in the appendix to do this. The first step in encryption uses the first five characters
from the key. Take each character from the original message (suppose it is of the form “abcdefg”,
where each bit is a “1” or a “0”), and modify it like this with a copy of the keys:
keyl’: a*#*¥¥¥g
key2’: *p***f*
key3’: **C****
key4’: ***d***
keys’: ****e**

Then put the modified keys back together in order (keyl’key2’...key5’). Note that the asterisks
are the original bits of the keys. The only thing that happens is that some of the bits are overwritten by
the character from the plaintext. This lengthens the message by a factor of five.

The next step in encryption is to do a transposition. We use the next character from the key,
which we transform into decimal according to the rules of binary (remember it should be a seven digit
binary number). The character used here should not be divisible by seven, so that when the bits are
turned back into characters, we will get a very different set of characters. This allows for over one
hundred possible keys here.

For the sake of explaining the transposition, we will say that the amount is an arbitrary quantity
“k.” First, the end of the message is indicated with a character. Then the first “k” bits are moved to after
that point in the message (they are deleted from the part before the special character and reproduced
following it). The next “k” bits are left alone and a different character is used to indicate the end of the
first “k” characters. Then the first “k” bits after the first special character are placed at the end of the
message, deleting them again from the first part of the message. The same special character placed after
the first “k” bits is placed after the next “k” bits.

This pattern repeats until the action would involve the character indicating the end of the
message. If the action was going to leave the characters alone, nothing is done, and all the special
characters are removed and the message is converted from bits to their ASCII designations (seven bits at

Paul Jenkins
Typewritten Text
Group M

Paul Jenkins
Typewritten Text

a time, using the table in the appendix). If the action was going to move the characters, all characters
before the end of message character are moved to the end, and all the special characters are removed
and the bits are converted to their ASCII designations.

Once the table is used to change the bits into characters, we will do a separate transposition. We
will use the next three characters of the key in decimal form. Since the length of the partially encrypted
message is about six hundred, each character of the key should be less than one hundred. Therefore, the
part of the key that matters in decryption has approximately 100*¥100*¥100*100 = 100"4 = 100,000,000
configurations. Suppose the decimal forms of each key are “a,” “b,” and “c.” Then we create an empty
message, which we will call “ciphertext.” To transpose the message, we take the first “a” characters
out of the original message, and put them at the end of “ciphertext.” Then we take the last “b”
characters out of the original message, and put them at the end of “ciphertext.” Then we take the first
“c” characters out of the original message, and put them at the end of “ciphertext.” We take the last “a”
characters out of the original message, and put them at the end of “ciphertext.” We cycle through “a,”
“b,” and “c” and alternate between taking characters from the start and the end. Once the number of
remaining characters are less than the key currently in use, we put the rest at the end of “ciphertext.”
We have now encrypted our message.

In decryption, each the order of the steps is reversed. We undo the second transposition first.
Therefore, the first step in decryption uses the last three characters of the key, translated to decimal
form. We will split the encrypted message into two smaller messages. We will distinguish them from
each other by using the terms “front,” and “back.”

Suppose the three numbers from the key are “a,” “b,” and “c.” To undo this step, we take the
first “a” characters from the ciphertext, and put them at the end of “front.” Then we take the next “b”
characters and put them before the beginning of “back.” Then we take the next “c” characters from the
ciphertext and put them at the end of “front.” Then we take the next “a” characters from the ciphertext
and put them before the beginning of “back.” This pattern is continued until the length of the rest of the
message is less than the current key being used. Then the partially decrypted message is acquired by
putting the front, the rest of the message, and the back together in that order. Generally, we start with
the first number from the key and take that many characters from the ciphertext, alternating between
putting it at the end of “front” and the beginning of “back,” starting with “front.” Then the next key is
used, and we cycle through the keys.

Remember that one way to undo any transposition is to transpose a made up message and see
where each character went, and then to pull the transposed message back accordingly. It works like the
matching section of a test. This is not the most efficient way to undo the transposition, but it definitely
works and is easy to understand.

Now each character from the partially decrypted text is transformed into the bits according to
the ASCII table. The next step in decryption is to undo the second step of encryption. We will explain
how this works using some mathematical terms. Assuming the sixth character of the key has a decimal
form “k,” we will say that x is the length of the partially decrypted text divided by 2*k, and if the
remainder “r” is greater than k, then add r - k to x. Therefore, if r <=k, the length of the partially
decrypted text is given by 2kx + r, and if r >k, it is 2k(x - r + k) + r. The number x is important because

it tells us the “halfway point” of the message. This tells us the number of bits that were “left alone” in
the second step of encryption. Once again, we will split the partially decrypted message into two
messages. “Front” is the first x bits of the partially decrypted message, and “back” is the rest of the
partially decrypted message. We also create a separate, empty message called “final.” Then to
reconstruct the original series of bits, we take the first k bits from “back,” and put them in “final.” Then
we take the first k bits from “front” and put them at the end of“final.” Then we take the next k bits from
“back” and put them at the end of “final,” the next k bits from “front” and put them at the end of “final.”
So we go back and forth, taking the first k bits from “back,” then “front,” (removing them) and then
placing them at the end of “final.”

The final step in decrypting is to undo the first part of encryption. We will take thirty-five bits at
a time from the partially decrypted text. The original seven bits are the first bit, the ninth bit, the
seventeenth bit, the twenty-fifth bit, the thirty-third bit, the thirteenth bit, and the seventh bit of the
thirty-five bits in that order. Once we have all of the original bits, we can get the original message by
taking seven bits at a time and transforming them back into characters using the modified ASCII table.

We have described a cryptosystem that encrypts mostly using transpositions. The message is
transformed to bits through a modified ASCII system, the message is stretched to a message five times
as long, and then the bits are moved around, and transformed back into characters, which are then
extremely different because the blocks of seven bits were split up and put in different places. Then the
characters are transposed again. The key needed to decrypt has a hundred million different
configurations, which strong for a ten digit key. Therefore, the encrypted information will remain secure
and, even if others knew the complex cryptosystem, it would be incredibly difficult to decrypt.

EXAMPLES, ENCRYPTION PART ONE:

We will use 1010011101010010000011011001 and a key of “stars” which we transform into:
s=1110011

t=1110100

a = 1100001

r=1110010

s=1110011

For future reference, the first seven digits of the plain text bits are 1010011, the next seven are 1010100,
the third group of seven is 1000001, and the last seven are 1011001.

We work one byte at a time. For a byte “abcdefg,” we encode using the key “stars” as follows:
s*=all00lg

t* = 1b101f0

a* = 11c0001

r*=111d010

s*=1110el1

And then our resulting byte is encrypted by s* t* a* r* g*

In this case, we obtain

s*=1110011

t*=1010110

a* =1110001

r*=1110010

s*=1110011

And we get 11100111010110111000111100101110011

We repeat for the bytes 1010100, 1000001, and 1011001.

s*=1110010

t¥* =1010100

a* = 1110001

r*=1110010

s*=1110111

11100101010100111000111100101110111

s*=1110011
t*=1010100
a* =1100001
r*=1110010
s*=1110011
11100111010100110000111100101110011

s*=1110011
t*=1010100
a*=1110001
r*=1111010
s*=1110011

11100111010100111000111110101110011

So our partially encrypted message that originally was 1010011101010010000011011001 becomes
11100111010110111000111100101110011111001010101001110001111001011101111110011101010011000
011110010111001111100111010100111000111110101110011

EXAMPLES, DECRYPTION TO FIRST PART:

In order to decrypt, we split the series of bits into smaller sets of 35 bits.
11100111010110111000111100101110011
11100101010100111000111100101110111
11100111010100110000111100101110011
11100111010100111000111110101110011

We will work one set at a time. We split the first set into five sets of seven bits.
1110011

1010110

1110001

1110010

1110011

Remembering the positions of the original bits based on the general map:
a¥krkig

*b***f*

C**

d

****e**

The original bits were 1010011.
We repeat for the other sets of bits.

11100101010100111000111100101110111 becomes
1110010

1010100

1110001

1110010

1110111

And the original bits were 1010100.

11100111010100110000111100101110011 becomes
1110011

1010100

1100001

1110010

1110011

And the original bits were 1000001.

11100111010100111000111110101110011 becomes
1110011

1010100

1110001

1111010

1110011

And the original bits were 1011001.

Therefore, the original message was:

1010011 1010100 1000001 1011001

Which we can compare this with the original:
1010011 1010100 1000001 1011001

We have successfully encrypted and decrypted this message.

EXAMPLES, ENCRYPTION PART TWO:

Partially encrypted bits: 1101000101010111010101110100101111101010101010010

First we are going to put a marker at the end, we will use for the sake of being able to see it the
character *.

Let's say the corresponding part of our key says "5," so we will select the first five bits and put them
after the asterisk, deleting them from the left side of the asterisk.
00101010111010101110100101111101010101010010*11010

Notice that the “11010” has been moved from the front of the message to the part after the asterisk in its
original order.

We will leave the next five where they are. We can put an ampersand after them to indicate that they
are fixed. Then we select the five after them, which is "01011," and put them after "11010."
00101&1010101110100101111101010101010010*1101001011

Place an ampersand five characters after the first ampersand, select the five letters after that, and place
them at the end.

00101&10101&100101111101010101010010*110100101101110

Just keep going.

00101&10101&10010&01010101010010*¥11010010110111011111
00101&10101&10010&01010&0010*1101001011011101111110101

Since the length of the rest of the characters before the asterisk is four, we're done. If we were to reach
the asterisk while cut/pasting bits, we would cut/paste as many of the bits as we could - even if it was
just the last two - three.

Since we're done, we remove the ampersands and the asterisk.
0010110101100100101000101101001011011101111110101

We will do another example.

Partially encrypted bits: 00101011101010110100010101101101010101110111010010111010
First we put the asterisk at the end.
00101011101010110100010101101101010101110111010010111010*

Let's say this time the key indicates each block should have a length of 3.

Each step of the process will be completed here but without much explanation.
010&11101010110100010101101101010101110111010010111010*001
010&010&10110100010101101101010101110111010010111010*001111
010&010&101&00010101101101010101110111010010111010*001111101
010&010&101&101&01101101010101110111010010111010*001111101000
010&010&101&101&011&01010101110111010010111010*001111101000011
010&010&101&101&011&101&01110111010010111010*001111101000011010
010&010&101&101&011&101&101&11010010111010*001111101000011010011
010&010&101&101&011&101&101&100&10111010*001111101000011010011110
010&010&101&101&011&101&101&100&110&10*001111101000011010011110101
010&010&101&101&011&101&101&100&110&*00111110100001101001111010110
01001010110101110110110011000111110100001101001111010110

This step disrupts the bits in case of a frequency of resulting characters.

EXAMPLES, DECRYPTION TO SECOND PART:

We will demonstrate decryption by reproducing
“00101011101010110100010101101101010101110111010010111010” from
“01001010110101110110110011000111110100001101001111010110” and knowing that the key is 3.
The first thing that we do is calculate how long the first part and the second part must have been
(indicated by the two sides of the asterisk).
010&010&*101*&101&*011*&101&*101*&100&*110*&001&*111*&101&*000*&011&*010*&011&
110&101&*10*

The sets of bits between asterisks would be moved to the end, and the sets of bits between ampersands
would remain where they are. Therefore, for a set of bits this length, there should be nine sets of bits
that stay on the left half of the bits, since there are nine sets of bits between ampersands. This is
equivalent to the division mentioned in the paper. This is a more visual representation.

The first nine sets of bits are *010¥&010&*101*&101&*011*&101&*101*&100&*110*, so we can
remove all the special characters in this set of bits.

010010101101011101101100110

And notice that the remainder of the message is
&001&*111*&101&*000*&011&*010*&011&*110*&101&*10*, However, we will leave the special
characters here. We will place the first half of the message in front.
010010101101011101101100110&001&*111*&101&*000*&011&*010*&011&*110*&101&* 10*
Notice that the first set of bits surrounded by special characters is &001&. We will place this at the front
of the message, delete the special characters, and place the marker (*) three bits after the end of 001.
001010(*)010101101011101101100110*111*&101&*000*&011&*010*&011&*110*&101&*10*
Therefore the (*) is placed after the first six bits. The next set enclosed by asterisks or ampersands is
111. So we will place *111* after the (*) and remove the asterisks, and place another (*) three bits
after the end of *111*.
001010(*)111010(*)101101011101101100110&101&*000*&011&*010*&011&*110*&101&*10*

We proceed according to this pattern.
001010(*)111010(*)101101(*)101011101101100110*000*&011&*010*&011&*110*&101&*10*

001010(*)111010(*)101101(*)000101(*)011101101100110&011&*010*&011&*110*&101&*10*
001010(*)111010(*)101101(*)000101(*)011011(*)101101100110*010*&011&*110*&101&*10*
001010(*)111010(*)101101(*)000101(*)011011(*)010101(*)101100110&011&*110*&101&*10*
001010(*)111010(*)101101(*)000101(*)011011(*)010101(*)011101(*)100110*110*&101&*10*
001010(*)111010(*)101101(*)000101(*)011011(*)010101(*)011101(*)110100(*)110&101&*10*
001010(*)111010(*)101101(*)000101(*)011011(*)010101(*)011101(*)110100(*)101110(*)*10*

Now, since the last set of characters were changed (and therefore originally at the end of the message),
we can just erase all special characters to get:
00101011101010110100010101101101010101110111010010111010

Note that this is equivalent to

00101011101010110100010101101101010101110111010010111010

Which I copy/pasted from the original, while the one above it I simply deleted the special characters.
Therefore, we have achieved the original set of bits from the encrypted set and the key.

We will do it again for a slightly different case; we will use the first set of bits we encrypted this time.
The original set of bits is 1101000101010111010101110100101111101010101010010, the key is five, and
the encrypted set of bits is 0010110101100100101000101101001011011101111110101.
00101&10101&*10010%&01010&*00101*&10100&*10110*&11101&*11111*&0101&

This time we have run into an issue. Since the last four bits are between ampersands, and four is not
five, we will have to re-do some of the symbols to adjust. However, we first count that there are four
complete sets between ampersands, so the first four sets of bits are fine and we can delete the special
characters.

00101101011001001010

Since there would be four more bits, we take the next four bits from the next set and place them at the
end of this re-transposition.

001011010110010010100010

Now we take all the rest of the bits from the original encrypted message and delete the special
characters.

1101001011011101111110101

We will take the first five of these bits and put them on the front of the re-transposition. We mark the
spot five bits after the end of this addition with (*).

1101000101(*)1010110010010100010

The rest of the characters to add are 01011011101111110101. Take the next five, place them after the
last (*), and put another (*) five bits after the end of the recently inputted five bits.
1101000101(*)0101110101(*)10010010100010

Continue with the pattern.

011101111110101

1101000101(*)0101110101(*)0111010010(*)010100010

1111110101
1101000101(*)0101110101(*)0111010010(*)1111101010(*)0010

10101
1101000101(*)0101110101(*)0111010010(*)1111101010(*)101010010

Now remove all of the (¥) and we are done.
1101000101010111010101110100101111101010101010010
Notice that it is equivalent to
1101000101010111010101110100101111101010101010010
Which we said it would be.

EXAMPLES, ENCRYPTION PART THREE

We will use three numbers from the key. So if the corresponding section of the key was 3, 4, 2, then it
would work like this:

Plain text: THISISAMESSAGE

Our first step is to take the first three characters at the beginning of the plain text and to put them as they
are into our cipher text.

Plain text: SISAMESSAGE

Cipher text: THI

Our next step is to take the last four characters at the end of the plain text and to put them as they are
and attach them to the end of the cipher text.

Plain text: SISAMES

Cipher text: THISAGE

Then we take the first two characters at the beginning of the plain text and attach them to the end of the
cipher text.

Plain text: SAMES

Cipher text: THISAGESI

Then we take the last three characters at the end of the plain text and attach them to the end of the
cipher text.

Plain text: SA

Cipher text: THISAGESIMES

Since the next step would be to take the first four characters at the beginning of the plain text, but there
are less than four characters left, we will take all of them and put them at the end.

Plain text:

Cipher text: THISAGESIMESSA

We have encrypted the message.

Some details to note: Each of the numbers in the key refers to how many characters are taken at a time.
First it is three, then four, then two, then three, then four, two, and so on, repeating in this fashion.

The first time characters are taken from the plain text, they are taken from the beginning, and then they
are taken from the end, and then they are taken from the beginning.

While this does not effectively scramble a message that much, because this is the last step, the message
already does not make very much sense and is a meaningless jumble of characters. We will do a second
example that demonstrates this.

Suppose we have the following:
Partially encrypted text: aSjfI(43$0- \?/BnT,wQPty091Vcbr2[:'0os3UhjblK5.!el
Key: 592

This means that we will take five characters, nine characters, two characters, and repeat.
Partially encrypted text: aSjfI(43$0- \?/BnT,wQPty091Vcbr2[:'0s3UhjblK5.!el

Partially encrypted text: (43$0- \?/BnT,wQPty091Vcbr2[:'0os3UhjblK5.!el
Cipher text: aSjfl

Partially encrypted text: (43$0- \?/BnT,wQPty091Vcbr2[:'0os3Uh
Cipher text: aSjfIjblK5.!el

Partially encrypted text: 3$0- \?/BnT,wQPty091Vcbr2[:'os3Uh
Cipher text: aSjfIjblK5.!el(4

Partially encrypted text: 3$0- \?/BnT,wQPty091Vcbr2[:'

Cipher text: aSjfIjblK5.!el(40s3Uh

Partially encrypted text: nT,wQPty091Vcbr2[:'

Cipher text: aSjfljblK5.!el(40s3Uh3%0- \?/B

Partially encrypted text: nT,wQPty091Vcbr2[

Cipher text: aSjfIjblK5.!el(40s3Uh3$0- \?/B:'

Partially encrypted text: Pty091Vcbr2[

Cipher text: aSjfljblK5.!el(40s3Uh3%0- \?/B:'nT,wQ

Partially encrypted text: Pty

Cipher text: aSjfljblK5.!el(40s3Uh3$0- \?/B:'"nT,wQ091Vcbr2[
Partially encrypted text: y

Cipher text: aSjfljblK5.!el(40s3Uh3$0- \?/B:'"nT,wQ091Vcbr2[Pt
Partially encrypted text:

Cipher text: aSjfljblK5.!el(40s3Uh3$0- \?/B:'"nT,wQ091Vcbr2[Pty

EXAMPLES, DECRYPTION TO THIRD PART:

Now we will decrypt these messages. In the plain text “THISISAMESSAGE” there are 14 characters.
We will create a dummy text that is 14 characters long as follows:

Notice that if we encrypt this with the key, it will tell us where each number goes. Therefore, to decrypt,
we take the letter at each position and put it in the order of its corresponding number.

This can also be used to encrypt.

Encrypted dummy text:

Dummy text: *4% #5% *@G#* *7% Q% *Qx H](pk *] * #]2% *]3* *]4*
Encrypted dummy text: *1* *2% *3*

Dummy text: *¥4* *5% *@* 7% *xg* *gk *]()*
Encrypted dummy text: * 1% #2% *3% *[]* *]2% *]3* *]4*

Dummy text: ¥6* *7% *8* *9* *](*
Encrypted dummy text: 1% *2% *3% *#]]* #]2% #]3* #]4* 4% *5*

Dummy text: ¥6* *7*
Encrypted dummy text: *1% *2% *3% *]]* *]2% *]3% *]4% *4% k5% *g* *gk *] (%

Dummy text:
Encrypted dummy text: *1%* *2% *3% *]]* *¥] 2% *] 3% K] 4% k4% K5k Q% kQ* K] (k ko *7%

Now we need the encrypted text. We will line it up with our encrypted dummy text.
THI SAGE ST MESSA

010203111213 1404050809 1006 07

Therefore, in re-organizing our message, we do the following:
THISISAGEME SSA

0102030405111213 140809 1006 07

THISISAS AGEME S
01020304050607111213140809 10

THISISAME SS AGE
01020304050607080910111213 14

And we have reproduced our original plain text, “THISISAMESSAGE.”

Additionally, we will demonstrate a different system to do this on the other encrypted message:
aSjfljblK5.1el(40s3Uh3$0- \?/B:'nT,wQ091V cbr2[Pty

Notice that the first five characters must still be the same, but the next nine characters came from the
end. We will split these two sets of characters into their own sequences.

(40s3Uh3$0- \?/B:'nT,wQ091V cbr2[Pty

aSjfl

jbIKS.lel

The next two should follow the first five, and the five after that should precede the last nine.

3$0- \?/B:'nT,wQ091Vcbr2[Pty

aSjfl(4

0s3UhjblK 5. !el

The next nine should follow the first seven characters, and the two after that should precede the last
fourteen.

nT,wQ091Vcbr2[Pty

aSjf1(43$0- \?/B

'os3UhjbIKS5.lel

The next five should follow our first split set of characters, and the nine after that precede the second.
Pty

aSjf1(43%$0- \?/BnT,wQ

091Vcebr2[:'0os3UhjbIKS5.lel

The next two should follow the first set, and the remaining character (since it is less than the amount we
are taking) precedes the second set.

aSjfI(43%$0- \?/BnT,wQPt

y091Vcbr2[:'os3UhjblKS5. el

Now we place the second half after the first half:

aSjfI(43%0- \?/BnT,wQPty091Vcbr2[:'os3UhjblKS5. el

And we can compare with the original character sequence:

aSjfI(43%0- \?/BnT,wQPty091Vcbr2[:'os3UhjbIKS5. el

The result is the same! Therefore, we have encrypted and successfully decrypted.

Sample problem
Encrypt the message “Is this on?” (without the quotes) with the key abcdedééii.
Y ou should get “O{EbJ[égZEl@rfmH;A>[E£¢[0H;é'l@A/n9kSE 1 ¥{Eblapn|@iig{V},”

Appendix

Modified ASCII Table

i 0000000 E 0010000 (space) 00110000 | @ P 1010000 | 1100000 p 1110000

0100000 1000000
1 0000001 | &0010001 | 10100001 10110001 | A 1000001 | Q 1010001 | a1100001 q 1110001
¢ 0000010 | &E “0100010 | 20110010 | B1000010 [R1010010 | b1100010 | r1110010
0010010
40000011 [60010011 | #0100011 | 30110011 | C1000011 | S1010011 | ¢c1100011 [s1110011
40000100 | 60010100 | $0100100 | 40110100 | D 1000100 | T1010100 | 41100100 | t1110100
a 0000101 | 60010101 | % 50110101 | E1000101 [U 1010101 | 1100101 | ul1110101
0100101
40000110 | 0010110 | &0100110 | 60110110 | F1000110 | V1010110 | f1100110 v1110110
¢ 0000111 [00010111 | 0100111 70110111 | G1000111 [W g 1100111 | w1110111
1010111
€ 0001000 | ¥ 0011000 | (0101000 80111000 | H1001000 [X 1011000 [h1101000 | x 1111000
€ 0001001 O 0011001)0101001 90111001 | 11001001 Y 1011001 [11101001 y 1111001
¢0001010 | U 0011010 | *0101010 | : 0111010 J 1001010 | Z 1011010 | ;1101010 z1111010
10001011 ¢ 0011011 | +0101011 | ;0111011 K 1001011 | [1011011 k1101011 | {1111011
10001100 £0011100 | ,0101100 <0111100 | L1001100 | \1011100 11101100 [1111100
10001101 ¥0011101 | -0101101 =0111101 | M 11011101 m1101101 | } 1111101
1001101

A 0001110 | 40011110 | .0101110 >0111110 | N 1001110 | ~1011110 [{n1101110 | ~1111110
A 0001111 | 10011111 /0101111 20111111 O 1001111 | 1011111 Jol101111 | A T111111

