
687R Homework

(1) For any commutative ring R, the group GL2(R) is the set of 2× 2 matrices with invertible
determinant. Let Fq be the finite field of order q. What is the order of the group GL2(Fq)?
What is the order of SL2(Fq)?

(2) (a) Prove that the only matrices in SL2(Z) which act trivially on H are ± ( 1 0
0 1 ).

(b) Prove that SL2(Z) is generated by the matrices S = ( 0 1
−1 0 ) and T = ( 1 1

0 1 ). (See problem
1.1.1 in Diamond and Shurman.)

(3) Let γ = ( a bc d ) ∈ GL+
2 (Q). Define the weight k operator |[γ]k on functions H → C by

(f |[γ]k)(z) = (det γ)k−1(cz + d)−kf

(
az + b

cz + d

)
for all z ∈ H. Show that f |[γ1γ2]k = (f |[γ1]k)|[γ2]k for γ1, γ2 ∈ GL+

2 (Q). Prove that checking
whether a meromorphic function f : H → C is weakly modular can be done by checking
f(z + 1) and f(−1/z).

(4) Show that the set Mk(SL2(Z)) of modular forms of weight k forms a complex vector space.
Show that Sk(SL2(Z)) is a subspace. Show that the product of a modular form of weight
k1 and a modular form of weight k2 is a modular form of weight k1 + k2, so that the space
M(SL2(Z)) =

⊕
kMk(SL2(Z)) of modular forms of all weights forms a graded ring.

(5) (a) What is the kernel of the homomorphism GL2(Z/peZ)→ GL2(Z/pZ)?
(b) What is the order of the group GL2(Z/peZ)?
(c) What is the order of the group SL2(Z/peZ)?

(6) Let N = pe11 · · · perr . What is the order of the group SL2(Z/NZ)?
(7) (a) Prove the identity

∞∑
n=1

naxn

1− xn
=
∞∑
n=1

σa(n)xn.

(b) Let k ≥ 4 be an even integer. Let Ak be the coefficient of q in the Fourier expansion of

Ek(z). Prove that the Fourier coefficients of Ek(z)
Ak

are multiplicative.

(8) Diamond and Shurman, problem 1.1.6, parts (a), (b), (c).
(9) Given that the space M8(SL2(Z)) is one dimensional, prove that, for all positive integers n,

σ7(n) = σ3(n) + 120
n−1∑
i=1

σ3(i)σ3(n− i).

(10) Prove that the following is a complete set of coset representatives {αi} for Γ0(pe), i.e.,
SL2(Z) =

∐
αiΓ0(pe) is a disjoint union:

I;T−kS, k = 0, 1, . . . , pe − 1;ST−kpS, k = 1, 2, . . . , pe−1 − 1.

(11) Draw a fundamental domain for Γ0(4). Describe a fundamental domain for Γ0(p) and draw
a fundamental domain for Γ0(3).

(12) Prove that Γ0(p) has two cusps, which can be taken to be 0 and ∞. Find the three cusps
for Γ(2).

(13) Fill in the gap in the proof of the calculation of the index of Γ(N) in SL2(Z) by showing
that the map from SL2(Z) to SL2(Z/NZ) is indeed surjective, as we claimed.

(14) Prove that Γ0(p2) has p+ 1 cusps: ∞, 0, and −1/kp for k = 1, . . . , p− 1.
(15) Show that Γ0(4) = 〈± ( 1 1

0 1 ) ,± ( 1 0
4 1 )〉. (See Diamond and Shurman, problem 1.2.4.) What

conditions must be checked to ensure that a function f is weakly modular for Γ0(4)?
(16) Derive relations expressing σ5 in terms of σ1 and σ3, and σ7 in terms of σ1 and σ5.
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(17) Kilford, chapter 2, problem 18. Use the fact that

E2(γz) = (cz + d)2E2(z) +
6c

iπ
(cz + d).

(18) Show that E12 − E2
6 is a cusp form. Since S12(SL2(Z)) has dimension one, it is a multiple

of ∆(z) =
∑
τ(n)qn. Derive an expression for τ(n) in terms of σ11 and σ5, and show that

τ(n) ≡ σ11(n) (mod 691).
(19) Show that every modular form for SL2(Z) with integer coefficients is a polynomial with

integral coefficients in E4, E6, and ∆. (You may assume that ∆ has integral coefficients,
although we have not proven this yet.)

(20) Using the valence formula, find the zeros of the Eisenstein series in the fundamental domain
in each of the spaces of modular forms of dimension one. Use the modular transformation
equation to check these values.

(21) Find the Fourier expansions, up to the q5 term, of θE2, θE4, θE6, E2
2 −E4, E2E4 −E6, and

E2E6 − E2
4 . What do you notice?

(22) Compute the dimensions of Mk(Γ0(N)), Sk(Γ0(N)), Mk(Γ1(N)), and Sk(Γ1(N)) for 1 ≤
N ≤ 5, 0 ≤ k ≤ 12. You may wish to use SAGE to check your work.

(23) Evaluate
∑∞

n=1 σ(n)e−2πn.
(24) Show that the differential operator

Dk =
1

2πi

d

dz
− k

4πIm(z)

satisfies Dk(f |[γ]k) = (Dkf)|[γ]k+2, so it preserves modularity and raises the weight by 2.
(25) Describe a basis for M !

0(SL2(Z)) and M !
2(SL2(Z)). Show that the map D0 : M !

0(SL2(Z)) →
M !

2(SL2(Z)) is surjective. (Note that D0 = θ for this weight.) Conclude that if f ∈
M !

2(SL2(Z)), then the constant term in the Fourier expansion of f is zero.
(26) By induction, prove the formula

Dnk = Dk+2n−2 ◦ · · · ◦ Dk =
n∑

m=0

n!

(n−m)!

(
n+ k − 1

m

)(
−1

4πy

)m
θn−m.

Use the fact that if z = x+ iy, then

d

dz
=

1

2

(
∂

∂x
− i ∂

∂y

)
.

What happens if the weight is k = 2− 2s and n = 2s− 1?
(27) Recall that if k = 12` + k′, where k′ ∈ {0, 4, 6, 8, 10, 14}, then a basis for M !

k(SL2(Z)) is
given by the functions fk,m(z) = q−m +

∑
n>` ak(m,n)qn for m ≥ −`. Multiply fk,m(z) by

f2−k,n(z) and show that ak(m,n) = −a2−k(n,m).
(28) Let k ∈ {4, 6, 8, 10, 14}. Write Tpfk,m(z) as a sum of basis elements fk,m′(z). Compare

Fourier coefficients to show that if p - m, then the Fourier coefficient ak(m,np) is divisible
by pk−1.

(29) Find a basis for S32(SL2(Z)) consisting of eigenforms. (See Kilford, problem 4.4.1.)
(30) Kilford, problem 4.4.2.
(31) Kilford, problem 4.4.18. Recall that in making a differentiable change of complex variable

z 7→ u(z), the area element dxdy near z is multiplied by |u′(z)|2.
(32) Kilford, problem 4.4.10.
(33) Let k ≥ 4 be even and let p be prime. Is the form Ek(z)−Ek(pz) a cusp form for p = 2, 3, 5?

Why or why not?
(34) Kilford, problem 4.4.20.
(35) Kilford, problem 4.4.4, parts (a)-(c).
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(36) Kilford, problem 4.4.4, parts (d)-(e).
(37) Prove Theorem 4.19. Note that for α ∈ GL+

2 (Q), we have 〈f, g〉 = 〈f |[α]k, g|[(detα−1) ·α]k〉.
(38) Kilford, problem 4.4.15.
(39) Kilford, problem 4.4.16.
(40) Kilford, problem 4.4.21.

(41) Show that |g1(χ)| = √p by summing
∑

a∈(Z/pZ)× ga(χ)ga(χ) in two ways.

(42) Let GN be the multiplicative group (Z/NZ)× and let ĜN be the group of all Dirichlet
characters GN → C×. Show that

∑
n∈GN χ(n) is φ(N) if χ is trivial and 0 otherwise. For

(n,N) = 1, show that
∑

χ∈ĜN χ(n) is φ(N) if n ≡ 1 (mod N) and 0 otherwise.

(43) Let t ∈ Z+. Fix r ∈ Z with (r, t) = 1, and let n ∈ Z be arbitrary. Use the previous problem
to show that∑

ε∈Ĝt

ε(r)ε(n) =

{
ϕ(t) if r ≡ n (mod t)

0 if gcd(r, t) > 1 or r 6≡ n (mod t).

(44) Let f(z) =
∑
a(n)qn ∈Mk(Γ0(N), χ). Suppose that r ∈ Z with gcd(r, t) = 1. Show that

∞∑
n=0

n≡r (mod t)

a(n)qn ∈Mk(Γ1(Nt2)).

This holds also for gcd(r, t) > 1, which you are not required to prove. Hint: Use Theorem

4.29 to twist f by ε and sum ε(r)(fε) over all ε ∈ Ĝt.
(45) Find a holomorphic modular form of weight 6 on Γ0(3) with a zero of order 2 at ∞. Find a

weakly holomorphic modular form of weight 0 on Γ0(3) with a pole at ∞. Find a basis for
M6(Γ0(3)).

(46) Find the space of modular forms that

f(z) =
η(5z)5

η(z)
= q + q2 + 2q3 + 3q4 + . . .

is an element of. Repeat for

g(z) = η(4z)2η(8z)2,

F (z) =
η8(4z)

η4(2z)
.

(47) Prove that

η

(
z +

1

2

)
=
e2πi/48η3(2z)

η(z)η(4z)
.

(48) The cusps of Γ0(4) are represented by {∞, 0, 1/2}. Show that the values of F (z) (given
above) at the cusps are F (∞) = 0, F (0) = −1/64, and F (1/2) = 1/16.
Hint: Recall the transformation properties for η(z) for the matrices S, T . Note that

F (1/2) = lim
z→i∞

F |[( 1 0
2 1 )]2,

and use the transformation laws to show that

F |[( 1 0
2 1 )]2 =

−1

64z2

(
e−

2πi
24

)4 η8
(−1

4z
+ 1

2

)
η4
(−1

2z

) .
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(49) Let

E∗2(z) = E2(z)− 3

πIm(z)

be the nonholomorphic Eisenstein series of weight 2. Show that E∗2(z) is weight 2 invariant
for SL2(Z). You may want to prove first that

1

(cz + d)2Im(γz)
=

1

Im(z)
− 2ic

cz + d
.

(50) Let N ≥ 2 be an integer. Suppose that for all d|N , there exist cd ∈ C with
∑

d|N
cd
d

= 0.
Show that ∑

d|N

cdE
∗
2(dz) =

∑
d|N

cdE2(dz) ∈M2(Γ0(N)).

Conclude that E2(z)−NE2(Nz) ∈M2(Γ0(N)).
(51) Let k ∈ Z and define the weight k hyperbolic Laplacian by

∆k = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

It acts on functions f : H → C for which f(x + iy) = u(x, y) + iv(x, y) has u and v with
continuous partial derivatives of all orders.
(a) Show that if f : H → C is holomorphic, then ∆k(f) = 0. (Remember the Cauchy-

Riemann equations.)
(b) Show that ∆2(E∗2(z)) = 0.

(52) Let Θ(z) =
∑

n∈Z q
n2

. It is true that Θ4(z) ∈M2(Γ0(4)). Show that

Θ(z) + Θ

(
z +

1

2

)
= 2Θ(4z).

(53) Show that the values of Θ4 at the cusps of Γ0(4) are Θ4(∞) = 1, Θ4(0) = −1/4, and
Θ4(1/2) = 0. You will need the transformation laws from class, and the fact that

( 1 0
2 1 ) z =

−1

4
(−1

4z
− 1

2

) .
(54) Integrating around a fundamental domain for Γ0(4), we obtain, for every nonzero modular

function of weight k on Γ0(4), the valence formula

v∞(f) + v0(f) + v1/2(f) +
∑

z∈Γ0(4)\H

vz(f) =
k

2
.

Assuming this, find a basis for Mk(Γ0(4)) for all integers k ≤ 2. (Look at previous problems
for forms that could be basis elements.)

(55) Show that if k ≥ 0 is even, then a basis for Mk(Γ0(4)) is given by the modular forms Θ4aF b,
where 2a+ 2b = k. What is the dimension of Mk(Γ0(4))?

(56) Let G = η20(2z)
η8(z)η8(4z)

. Prove that Θ4 = G, and use this to obtain an eta-quotient expression

for Θ(z).
(57) Kilford, problem 5.11.6: Find a formula for r8(n).
(58) Show that

∞∑
n=1
n odd

σ1(n)qn ∈M2(Γ0(8))

by twisting a certain modular form by an appropriate character. Given that this form is
actually in M2(Γ0(4)), write it in terms of basis elements for this space.
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(59) Does the θ-operator commute with the Up operators? How is Up(θf) related to θ(Upf)?
Repeat for the Vp operator.

(60) Find the dimension of Mk(Γ0(4), ψk) for all k ∈ 1
2
Z. Recall that this is generated by ΘaF b,

where 2b+ a
2

= k, and that ψk is equal to
(−4
•

)
if k is odd and the trivial character otherwise.

(61) Write T25Θ7 and T9Θ13 as polynomials in F and Θ.
(62) Compare the action of Tp2 on the Fourier expansion of a modular form of half integral weight

k/2 for Γ0(4N) with the action of Tp2 on the Fourier expansion of a modular form of integral
weight k for Γ0(N).

(63) Suppose that f(z) ∈Mk(SL2(Z)) has integer Fourier coefficients. Show that if f(z0) = 0 for
some z0 ∈ H, then j(z0) is an algebraic number.

(64) Kilford, problem 5.11.17: Find the Fourier expansion of the unique normalized eigenform
h ∈ S10(Γ0(2)) and represent it in terms of F and Θ.

(65) For primes p ≥ 5, there is a modular form (specifically, the Eisenstein series) for SL2(Z) of
weight p − 1 which is congruent to 1 (mod p). For p = 3, there are no modular forms for
SL2(Z) of weight p − 1, so this cannot be true. Find a modular form of higher level and
weight 2 which is congruent to 1 (mod 3).

(66) Calculate eπ
√

163 to at least twenty decimal places. It is true that if the quadratic imaginary

field Q(
√
d) has class number one, then the j-function, evaluated at imaginary quadratic

points in the fundamental domain of discriminant d, has integer values. It is also true that
the q−1 term of the Fourier expansion of j(z) is the dominant term. How does this explain
the answer you found? Find a list of discriminants with class number one and find more
such “almost integers”. (See Kilford section 5.3.2.)

(67) Evaluate ∑
1≤k≤10100

k odd

σ1(k)σ1(10100 − k).

No sigma functions should appear in your answer.
(68) Kilford, problem 6.6.4: Show that ∆(z) ∈ S12(SL2(Z)) and f = η2(z)η2(11z) ∈ S2(Γ0(11))

are congruent modulo 11.
(69) Kilford, problem 6.6.6: Check that

θ(∆) ≡ ∆E2
4E6 (mod 13)

and find another congruence θ(f) ≡ g where both f and g are eigenforms.
(70) Find the partition with odd parts that Sylvester’s hook bijection maps to the partition

13 + 10 + 9 + 8 + 7 + 4. Repeat for 12 + 11 + 8 + 6 + 3(+0).
(71) Prove that the number of partitions of n in which only odd parts may be repeated equals

the number of partitions of n in which no part appears more than three times.
(72) Apply the θ-operator to the log of the generating function for p(n) to prove that np(n) =∑n

k=0 σ1(k)p(n− k).
(73) Prove that the number of partitions of n with distinct parts that are all odd equals the

number of partitions of n that are self-conjugate.
(74) Prove that

∞∑
n=0

qn
2+n

(q; q)n(q; q)n+1

=
1

(q; q)∞
.

(75) Let p±(n) denote the number of partitions of n into an even or odd number of parts, re-
spectively. Show that |p−(n)− p+(n)| equals the number of partitions of n into distinct odd
parts. (Hint: Replace q by something else in the generating function for p(n).)

(76) Modify the proof that p(5n+ 4) ≡ 0 (mod 5) to show that p(7n+ 5) ≡ 0 (mod 7).
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(77) Show that τ(n) is 0 (mod 7) when n ≡ 0, 3, 5, 6 (mod 7) by writing ∆(z) = q(q; q)24
∞ and

working modulo 7.
(78) Calculate a large number of consecutive values of p(n). What proportion of them are even?

Odd? What proportion of them are 0, 1, 2 (mod 3)?
(79) Define the Dirichlet character χ12 modulo 12 by letting χ12(n) be equal to 1 if n ≡ ±1

(mod 12), -1 if n ≡ ±5 (mod 12), and 0 otherwise. Use infinite product identities from
class to show that

η(z) =
∞∑
n=1

χ12(n)q
n2

24 .

(80) Show that

∆(z)2 ≡

(
∞∏
m=1

(1− q7m)7

)
∞∑
n=2

p(n− 2)qn (mod 7).

(81) Show that

f(z) = q
∞∏
n=1

(1− q8n)10(1 + q4n)14

(1 + q8n)14
=
∞∑
n=1

a(n)qn

is a cusp form, and find its weight, level and character. Compute the Sturm bound for this
space, and check that f(z) is an eigenform for the Hecke operator T5 by computing enough
terms of U5f + 5k−1V5f . (It is actually a Hecke eigenform.)

(82) Let ∆(z) =
∑∞

n=1 τ(n)qn, as usual. Assuming Deligne’s result that |τ(p)| ≤ 2p11/2, prove
that |τ(n)| ≤ d(n)n11/2, where d(n) is the number of divisors of n. (Hint: You may need
results on solutions for linear recurrence relations.)

(83) Let WN = ( 0 −1
N 0 ) be the Fricke involution. Show that the trace operator given by f →

f +pαf |Wp|Up sends a form f ∈Mk(Γ0(p)) to a form in Mk(SL2(Z)) if α is chosen correctly.
(84) Find a basis of eigenforms for M24(SL2(Z)) in terms of the canonical basis f24,m(z) by

computing the matrix of at least one Hecke operator.


