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abstract

Spaces of Weakly Holomorphic Modular Forms in Level 52

Daniel Meade Adams
Department of Mathematics, BYU

Master of Science

Let M ]
k(52) be the space of weight k level 52 weakly holomorphic modular forms with

poles only at infinity, and S]k(52) the subspace of forms which vanish at all cusps other than
infinity. For these spaces we construct canonical bases, indexed by the order of vanishing
at infinity. We prove that the coefficients of the canonical basis elements satisfy a duality
property. Further, we give closed forms for the generating functions of these basis elements.
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Chapter 1. Introduction

Modular forms have applications in many areas, from Fermat’s last theorem to partitions,

the Monster Group, and sums of squares. These forms are even used in computing entropy

in black holes and string theory.

We say that a function f : H → C is a modular form of weight k ∈ Z and level N ∈ N if

the following conditions hold. First, f is holomorphic on H = {z ∈ C : Im(z) > 0} together

with the set of cusps for level N . Second, f satisfies the equation

f

(
az + b

cz + d

)
= (cz + d)k f(z), for all

(
a b
c d

)
∈ Γ0(N) (1.1)

where

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
.

When equation 1.1 is applied to the matrices
[ −1 0

0 −1
]

and [ 1 1
0 1 ], we note that k must be

even and that f is periodic of period 1. Since f is periodic, f has a Fourier expansion. Let

q = e2πiz; then f(z) =
∑

n≥n0
anq

n where n0 is the order of vanishing of f at infinity.

If f vanishes at each cusp, then f is said to be a cusp form. We write Mk(N) for the

space of all modular forms of weight k and level N , and Sk(N) for the space of cusp forms

of weight k and level N . Both of these spaces are finite-dimensional vector spaces over C.

By relaxing the definitions of the forms in Mk(N) to allow functions be meromorphic

at the cusps, we get the space M !
k(N). Further adjusting to the functions of M !

k(N) to

allow the functions to be holomorphic at all cusps, except possibly at infinity, creates the

space M ]
k(N). Of the functions in M ]

k(N), the functions that vanish at each cusp other than

infinity form the subspace S]k(N). These last two spaces of weakly holomorphic forms are

the topic of this thesis.

In their paper Duke and Jenkins [3] focus on M ]
k(1). From this paper we point out the

following features.

(i) There is a canonical basis whose elements are in the form fk,m(z)= q−m+
∑
n≥`+1

ak(m,n)qn,

where ` is the greatest order of vanishing at infinity of any form in M ]
k(1).
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(ii) The generating function
∑
m≥`

fk,m(τ)qm has the closed form
∑
m≥`

fk,m(τ)qm=
fk,−`(z)f2−k,1+`(τ)

j(τ)− j(z)
.

(iii) The coefficients of the basis elements satisfy Zagier duality: ak(m,n) = −a2−k(n,m).

(iv) The coefficients of the basis elements satisfy the divisibility nk−1|ak(m,n) for (m,n) = 1

and k ∈ {4, 6, 8, 10, 14}.

They also show, for certain values of m, that the zeros of fk,m(z) are on the unit circle.

Many of these results have been generalized in other levels of genus 0. In levels 2 and

3, Garthwaite and Jenkins [5] look at the zeros of the basis elements of M ]
k(2) and M ]

k(3),

giving a lower bound for the number of zeros on the lower boundary of the fundamental

domain. Garthwaite and Jenkins utilize the generating function from El-Guindy [4] for their

calculations concerning where the zeros lie. For levels 2 and 3, Andersen and Jenkins [1] prove

several congruences for the weight zero basis element coefficients. Andersen and Jenkins also

give a basis of the same form as (i) for levels 2, 3, 5, and 7. Level 4 has similar results by

Haddock and Jenkins [6]. They give a generating function and show that the coefficients of

the basis elements satisfy Zagier duality. Similar to the other levels they also give bounds

for the zeros on the lower boundary of the fundamental domain. Jenkins and Thornton [8]

add coefficient congruences to Andersen and Jenkins’ work. In [7] Jenkins and Thornton list

basis elements in the form (i) above for levels 8, 9, 16, and 25 and give congruences. Work

is also underway for the other levels of genus zero. We seek to address the points (i)-(iv) in

higher levels under a few specific conditions.

In the mentioned levels, all of the canonical basis elements have integral coefficients.

However, this is not the case in all levels; for instance, levels 52, 56, 63, 66, 70, and 78 have

a canonical basis with rational Fourier coefficients. This implies that there is a congruence

between Hecke eigenforms modulo primes dividing the denominators of the rational coeffi-

cients. This initial difference raises the question of whether the same techniques applied in

lower levels will generalize.
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In this paper we examine level 52, which is the lowest level where Mk(52) is spanned

by eta-quotients and its basis elements have rational Fourier coefficients. We expect that

the results of this paper could be easily generalized to give similar results for levels 56, 63,

and 70 since, like level 52, they are of genus 5, spanned by eta-quotients, and have rational

Fourier coefficients. These results may also generalize to levels 66 and 78 which have higher

genus, but are spanned by eta-quotients and have rational Fourier coefficients.

This paper is outlined as follows: In Chapter 2 we construct canonical bases for the

spaces M ]
k(52) and S]k(52), which are given in Theorems 2.10 and 2.11 respectively. Two

cases of the main result are listed here.

Theorem 2.1. S]2(52) has a canonical basis of the form {g2,m(z)|m ≥ −5, m 6= 0} where

g2,m(z) = q−m + a2(m, 0) +
∞∑
n=6

a2(m,n)qn.

Theorem 2.2. M ]
2(52) has a canonical basis {f2,m(z)|m ≥ −13, m 6= −9, . . . ,−12} where

f2,m(z) = q−m +
12∑
n=9

a2(m,n)qn +
∞∑

n=14

a2(m,n)qn.

In Chapter 3 we prove a duality result similar to that of Zagier’s work in [12].

Theorem 3.3. Let the weight k be given. Let fk,n(τ) ∈ M ]
k(52) and g2−k,n(z) ∈ S]k(52).

Then we have
ak(m,n) = −b2−k(n,m).

In Chapter 4 we give generating functions connecting the basis elements in Theorem 4.4.

Definition 4.1. Let fk,m(z) be basis elements as found in Theorem 2.10. Then the gener-

ating function Fk(z, τ) is given by

Fk(z, τ) =
∞∑

n=−n0

fk,n(τ)qn

where n0 is the greatest order of vanishing at infinity of any form in M ]
k(52).

3



One case of the main result of that chapter is

Theorem 4.3. Let k = 2+12l and y = 7k−1. Let Fk(z, τ) = fk,−y(τ)q−y+
∑∞

n=5−y fk,n(τ)qn.

Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + 2fk,5−y(τ)g2−k,y−1(z) + fk,5−y(τ)g2−k,y−3(z)

+ fk,5−y(τ)g2−k,y+1(z) + 2fk,6−y(τ)g2−k,y−2(z) + fk,6−y(τ)g2−k,y−4(z)

+ fk,7−y(τ)g2−k,y−1(z) + 2fk,7−y(τ)g2−k,y−3(z) + fk,8−y(τ)g2−k,y−2(z)

+ 2fk,8−y(τ)g2−k,y−4(z) + fk,9−y(τ)g2−k,y−3(z) + fk,10−y(τ)g2−k,y−4(z)

+ 2fk,−y(τ)g2−k,y−2(z)

)
.

The main result, in entirety, is Theorem 4.4. We give proofs of two cases. The omitted

proofs have their recurrence relation and revised generating functions given in Appendix B.

In Chapter 5 we state further work to be accomplished and conjectures for higher levels.
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Chapter 2. Canonical Bases

In constructing a canonical basis, we want a basis which allows us to easily and uniquely

identify the linear combination of the basis elements used to create any other form in the

space. To do this, we will take a basis and row reduce to annihilate as many terms as possi-

ble. This gives elements which start with a given leading term and whose next term has an

exponent as large as possible. The goal is to have a basis for all weights similar to the bases

for weight 2 in the following theorems, which will be constructed in Section 2.3.

Theorem 2.1. S]2(52) has a canonical basis {g2,m(z)} where

g2,m = q−m + a2(m, 0) +
∞∑
n=6

a2(m,n)qn, for all m ≥ −5, m 6= 0.

Theorem 2.2. M ]
2(52) has a canonical basis {f2,m(z)} where

f2,m = q−m +
12∑
n=9

a2(m,n)qn +
∞∑

n=14

a2(m,n)qn, for all m ≥ −13, m 6= −9, . . . ,−12.

In order to construct a basis for S]2(N), work in levels of genus zero makes use of the

Hauptmodul, a weakly holomorphic modular form of weight 0 with a pole of order 1 at

infinity. However, Hauptmoduln do not exist in levels of higher genus. To have a function

with comparable effect, we will need to find a function in the space M ]
0(N) with pole of

minimal order at infinity. We then multiply the weight zero form by the forms in S2(52)

to create other forms that are meromorphic at the cusp at infinity but sill holomorphic

elsewhere. Note that multiplying a weight 0 form by a weight k form will result in a weight

k form. This introduces forms with leading term q−m for m ∈ N, with maybe some subset of

N unaccounted for. We then subtract off the previous forms to give a gap or multiple gaps

as described at the beginning of this chapter. As we will see, it is necessary to use a second
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form to get all possible orders of vanishing at infinity in the absence of a Hauptmodul. We

use eta-quotients to find these two functions. To do this we need a deeper understanding

about the structure of our space.

2.1 Eta-quotients

First we list the definition of the Dedekind eta-function [2].

Definition 2.3. The eta-function is defined by the formula η(z) = q1/24
∞∏
n=1

(1− qn).

The modular transformations of the eta-function take the form

η

(
az + b

cz + d

)
= ε(a, b, c, d)(cz + d)1/2η(z) for

(
a b
c d

)
∈ SL2(Z) and ε(a, b, c, d)24 = 1.

The eta-quotient is defined by f(z) =
∏
δ|N

η(δz)rδ with rδ ∈ Z.

The following theorem from Kilford’s text [9] lists when an eta-quotient is in the space

M ]
k(N).

Theorem 2.4. Let f(z) =
∏
δ|N

η(δz)rδ with rδ ∈ Z. If

(i)
∑
δ|N

δrδ ≡ 0 mod 24,

(ii)
∑
δ|N

N

δ
rδ ≡ 0 mod 24,

(iii)
∏
δ|N

δrδ is the square of a rational number,

then f(z) is weakly modular of weight k = 1
2

∑
δ|N

rδ and level N .

The next theorem of Ligozat [10] gives us a way to compute the order of vanishing at

each cusp.
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Theorem 2.5 (Ligozat’s formula). The order of vanishing of an eta-quotient f(z) at the

cusp c/d, where (c, d) = 1, is given by

ordc/d(f) =
N

24

∑
δ|N

gcd(d, δ)2rδ
gcd(d,N/d)dδ

.

This formula allows us to test whether a weakly modular eta-quotient is in the space S]k(N).

In [11], Rouse and Webb give a sharp bound on the exponents used in an eta-quotient.

Let rδ for δ|N be the exponents of the eta-functions η(δz) in an eta-quotient. Then

∑
δ|N

|rδ| ≤ 2k
∏
p|N

(
p+ 1

p− 1

)min{ 2,ordp(N) }

.

This means that for a given level and weight, there are a finite number of possible eta-

quotient modular functions in Mk(N). We say that a space is spanned by eta-quotients if

it has a basis of eta-quotients. Rouse and Webb also state that spaces having a sufficiently

composite level should be spanned by eta-quotients.

2.2 The space M2(52)

Using SAGE, we can quickly produce a basis of Mk(52) for relatively low weights k ∈

{ 2, 4, 6, 8 }, yielding:
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M2(52) = span
{
q − 4

3
q7 − 5

3
q9 +

2

3
q11 − 1

3
q13 − 2

3
q15 +O(q17),

q2 − q6 + q8 − 2q10 − 2q12 +O(q17),

q3 − 2

3
q7 − 7

3
q9 +

4

3
q11 +

1

3
q13 − 4

3
q15 +O(q17),

q4 − 2q6 + q10 − q12 + q14 + q16 +O(q17),

q5 − 1

3
q7 − 2

3
q9 − 4

3
q11 − 1

3
q13 +

1

3
q15 +O(q17),

1 +O(q17),

q + 4q3 + 6q5 + 8q7 + 13q9 + 12q11 + 24q15 +O(q17),

q2 + 4q6 − 2q8 + 6q10 + 8q14 − 6q16 +O(q17)

q4 + 3q8 + 4q12 + 7q16 +O(q17)

q13 +O(q17)
}
,

where the first 5 forms are a basis for S2(52). Verifying that M2(52) is indeed spanned by

eta-quotients is done by Rouse [11] where he references

http://users.wfu.edu/rouseja/eta/etamake9.data.

On this site, Rouse lists tuples containing the exponents rδ from Theorem 2.4 to represent

eta-quotients, where the subscripts are the divisors of 52. There tuples are structured as

(r1, r2, r4, r13, r26, r52). The eta-quotients spanning M2(52) are represented below.

(0,−4, 8, 0, 0, 0), (8,−4, 0, 0, 0, 0), (0, 0, 0, 0,−4, 8), (0, 0, 0, 8,−4, 0),

(0,−2, 4, 0,−2, 4), (4,−2, 0, 4,−2, 0), (1,−2, 3, 3,−2, 1), (3,−2, 1, 1,−2, 3),

(−3, 7,−2,−1, 1, 2), (−2, 7,−3, 2, 1,−1).

The next theorem gives us more structure about the spaces Mk(52).
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Theorem 2.6. The form

h(z) = q84 − 2q86 + 3q88 − 6q90 +O(q92) ∈M12(52) (2.1)

has all of its zeros at infinity. Additionally, k = 12 is the smallest positive weight in which

such a form exists.

Proof. Using SAGE we create bases for weights 2, 4, 6, 8, 10 and 12 in level 52. After row

reduction on the basis, comparing the leading terms of the forms with the respective Sturm

bound, only M12(52) has a form with power of its leading term equal to the Sturm bound.

This form of weight 12 has a leading term q84; by the valence formula we can verify this has all

of the zeros at infinity, since with k = 12 and N = 52, we have k
12

[SL2(Z) : Γ0(N)] = 84.

Thus, the space Mk(52) has no form with all of its zeros at infinity for k = 2, 4, 6, 8, 10. We

may also state another condition on S2(52).

Theorem 2.7. Then S]2(52) has no form starting with a constant term.

Proof. Since the function h(z) = q84 − 2q86 + 3q88 − 6q90 + O(q92) (see 2.1) has all of its

zeros at infinity, multiplying h(z) by any form g(z) ∈ S]2(52) with a constant leading term

will give a product h(z)g(z) in S14(52) (since it vanishes at infinity) whose leading term is

q84. However, computing a basis for S14(52) in SAGE shows no such form exists.

We will now apply this result to find a form in M ]
0(52) with a pole of minimal order at

infinity.

Theorem 2.8. The weakly holomorphic modular form

ϕ6(z) = q−6 + 2q−4 + q−2 + 2q2 + 3q6 + 2q8 +O(q12) ∈M ]
0(52) (2.2)

has a pole of minimal order at infinity.

9



Proof. Given a form in M ]
k(52) with minimal pole at infinity, multiplying this form by any

cusp form in S2(52) results in a form in S]2(52). By Theorem 2.7 this product will not have

a constant leading term. Since the basis elements of S2(52) have leading terms q5, q4, q3, q2,

and q, this eliminates the possibilities q−1, q−2, q−3, q−4 or q−5 as leading terms of the form of

weight zero. Using SAGE (see A.1), we first conduct a search for a form starting with q−6.

Using Theorem 2.4 we create tuples (r1, r2, r4, r13, r26, r52) where r52 = −r1−r2−r4−r13−r26,

which guarantees the weight is zero. The |ri| are bounded to make computation reasonable.

To satisfy conditions (i) and (ii) of Theorem 2.4 we verify that Ligozat’s formula (2.5) gives

a nonnegative integer for d = 1, N ; we also need the order of vanishing to be a nonnegative

integer at every cusp other than infinity. Condition (iii) is satisfied when r2 +r26 ≡ 0 mod 2

and r13 + r26 + r52 ≡ 0 mod 2. Lastly, to get the order of vanishing at infinity to be −6 we

need
∑

δ|52 δ
rδ = −144.

With these conditions programmed into SAGE we found the form

η4(4z)η2(26z)

η2(2z)η4(52z)
= q−6 + 2q−4 + q−2 + 2 + 2q2 + 3q6 + 2q8 +O(q12).

Since this form resides in M0(52) and 1 ∈M0(52), we may take a linear combination of these

two to get

ϕ6(z) = q−6 + 2q−4 + q−2 + 2q2 + 3q6 + 2q8 +O(q12).

2.3 Constructing the basis for S]
2(52)

We can now create all the canonical basis elements of S]2(52) with leading terms q5, q4, q3, ...

and any leading term of negative power not congruent 0 modulo 6 by using the elements of

S2(52) and ϕ6(z)l for some integer l ≥ 0. However, we should be able to create all negative

powers for the leading term. Thus, we need another form of weight zero and a pole at infinity

of order between 7 and 11 (we don’t want 12 since we can achieve that with ϕ2
6).
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Theorem 2.9. The weakly holomorphic modular form

ψ(z) = q−7 +
1

3
q−5 +

2

3
q−3 +

4

3
q−1 +

2

3
q+

2

3
q3 +

1

3
q5 +

5

3
q7 + 2q9 +

7

3
q11 +

1

3
q13 +

5

3
q15 +O(q17)

is an element of M ]
0(52).

Proof. Again with similar criteria, we change the order of vanishing at infinity to −8 in our

SAGE code (A.1) (we didn’t find an eta quotient with leading term q−7) and find two forms,

which are listed as the tuples (−3, 7,−2,−1, 5,−6) and (3,−2, 1, 1, 2,−5). Using a linear

combination of the corresponding forms to cancel out the first term gives us the form

ψ(z) = q−7 + 1
3
q−5 + 2

3
q−3 + 4

3
q−1 + 2

3
q+ 2

3
q3 + 1

3
q5 + 5

3
q7 +2q9 + 7

3
q11 + 1

3
q13 + 5

3
q15 +O(q17).

Using fo,7(z) with ϕ6(z) and the forms in S2(52), we are able to create all of the forms

with any negative leading power in S]2(52).

Looking back at S2(52), we label the cusp forms as:

g2,−5(z) =q5 − 1

3
q7 − 2

3
q9 − 4

3
q11 − 1

3
q13 +

1

3
q15 +O(q17)

g2,−4(z) =q4 − 2q6 + q10 − q12 + q14 + q16 +O(q17)

g2,−3(z) =q3 − 2

3
q7 − 7

3
q9 +

4

3
q11 +

1

3
q13 − 4

3
q15 +O(q17)

g2,−2(z) =q2 − q6 + q8 − 2q10 − 2q12 +O(q17),

g2,−1(z) =q − 4

3
q7 − 5

3
q9 +

2

3
q11 − 1

3
q13 − 2

3
q15 +O(q17).

As discussed we will multiply these terms by ϕ6 and ψ(z) to obtain leading terms with any

arbitrary negative exponent. To get a basis element we then subtract off a linear combination

of the previous terms to cancel out as many terms as possible. As a reminder, by Theorem

2.7 there is no form g2,0(z). Continuing with the basis elements, we have:
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g2,1(z) =g2,−5(z)ϕ6(z)− 5

3
g2,−1(z) +

1

3
g2,−3(z) + 3g2,−5(z) = q−1 +O(q6)

g2,2(z) =g2,−4(z)ϕ6(z) + 3g2,−2(z) + g2,−4(z) = q−2 +O(q6)

g2,3(z) =g2,−3(z)ϕ6(z)− 2g2,1(z)− 1

3
g2,−1(z) +

11

3
g2,−3(z) + 2g2,−5(z) = q−3 +O(q6)

g2,4(z) =g2,−2(z)ϕ6(z)− 2g2,2(z) + g2,−2(z)− g2,−4(z) = q−4 +O(q6)

g2,5(z) =g2,−1(z)ϕ6(z)− 2g2,3(z)− g2,1(z) +
4

3
g2,−1(z) +

7

3
g2,−3(z) + 4g2,−5(z) = q−5 +O(q6)

g2,6(z) =g2,−1(z)ψ(z)− 1

3
g2,4(z)− 2

3
g2,2(z) +

13

9
g2,−2(z) +

1

9
g2,−4(z) = q−6 +O(q6)

...
...

Hence, S]2(52) has a canonical basis consisting of the functions

g2,m(z) = q−m + a2(m, 0) +
∞∑
n=6

a2(m,n)qn,

which are defined for m ≥ −5, m 6= 0. Note that Theorem 3.2 shows a2(m, 0) = 0 for all m.

Similarly we start with the eight forms in M2(52) and perform the same process to get a

canonical basis for M ]
2(52) consisting of the functions

f2,m(z) = q−m +
12∑
n=9

a2(m,n)qn +
∞∑

n=14

a2(m,n)qn,

which are defined for m ≥ −13, m 6= −9,−10,−11,−12.

2.4 Challenges in increasing and decreasing the weight

In constructing bases in other weights we will use h(z) (see equation 2.1), the form of weight

12 with all of its zeros at infinity. Multiplying by h(z) increases weight by 12 and dividing

by h(z) decreases weight by 12. Multiplication by h(z)` for ` ∈ Z introduces a possible pole

only at infinity. Thus, to construct the general basis it is sufficient to know the structure of
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Mk(N) and Sk(N) for k = 2, 4, 6, 8, 10, and 12. These weights serve as a residue system

for any weight modulo 12. Below is a table listing the exponents of the leading terms for all

possible forms in the respective spaces.

Space M2(52) M4(52) M6(52) M8(52) M10(52) M12(52)

Exponent 0–8, 13 0–22, 26 0–36, 39 0–50, 52 0–65 0–78, 84

Space S2(52) S4(52) S6(52) S8(52) S10(52) S12(52)

Exponent 1–5 1–18 1–31, 33 1–44, 46, 47 1–57, 59–61 1–70, 72–75

Note that we can take different forms in Mk(52) and multiply by powers of ϕ6(z) or ψ(z)

to get any negative leading exponent in M ]
k(52). With the information in this table we are

able to construct a canonical basis for M ]
k(52) or S]k(52) for any weight.

2.5 Canonical bases: M ]
k(52) cases

In the preceding table we took the first 6 spaces for Mk(52) and Sk(52) and found what

leading terms were in this space. By use of ϕ6(z) and ψ(z) we can create a basis for M ]
k(52)

and S]k(52) for k = 2, 4, 6, 8, 10, and 12. To list the canonical basis for M ]
k(52) for any

given weight k we apply the following steps. Take the basis M ]
` (52) where ` ≡ k mod 12.

Multiply or divide the basis elements by a power of h(z) (see equation 2.1) which increases

or decreases the weight by a multiple of 12 to get back to a form of weight k. Row reduction

will change the bases previously found into canonical bases. Noting the sets of numbers in

the table and translating them by multiples of 84 will give the structure for the canonical

bases.
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Theorem 2.10. For a general weight k ∈ 2Z we have the following cases for the canonical

basis of M ]
k(52).

Case 1: k ≡ 0 mod 12.

Let k = 12l and let y = 7k. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m +

y−1∑
n=y−5

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y, with fk,m(z) = 0 if m = 5− y, . . . , 1− y.

Case 2: k ≡ 2 mod 12.

Let k = 12l + 2 and let y = 7k − 1. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m +

y−1∑
n=y−4

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y, with fk,m(z) = 0 if m = 4− y, . . . , 1− y.

Case 3: k ≡ 4 mod 12.

Let k = 12l + 4 and let y = 7k − 2. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m +

y−1∑
n=y−3

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y, with fk,m(z) = 0 if m = 3− y, 2− y, or 1− y.

Case 4: k ≡ 6 mod 12.

Let k = 12l + 6 and let y = 7k − 3. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m +

y−1∑
n=y−2

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y, with fk,m(z) = 0 if m = 2− y or 1− y.
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Case 5: k ≡ 8 mod 12.

Let k = 12l + 8 and let y = 7k − 4. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m + ak(m, y − 1)qy−1 +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y, with fk,m(z) = 0 if m = 1− y.

Case 6: k ≡ 10 mod 12.

Let k = 12l + 10 and let y = 7k − 4. Then M ]
k(52) has a basis of functions

fk,m(z) = q−m +
∞∑

n=y+1

ak(m,n)qn,

which are defined for all m ≥ −y.

2.6 Canonical bases: S]
k(52) cases

The same process of multiplying or dividing by h(z) and row reducing applies to the space

S]k(52). This gives the following theorem.

Theorem 2.11. For a general weight k ∈ 2Z we have the following cases for the canonical

basis of S]k(52).

Case 1: k ≡ 0 mod 12.

Let k = 12l and let y = 7k − 9. Then S]k(52) has a basis of functions

gk,m(z) = q−m + bk(m, y − 4)qy−4 +
∞∑

n=y+1

bk(m,n)qn,

which are defined if m ≥ −y, with gk,m(z) = 0 if m = 4− y.
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Case 2: k ≡ 2 mod 12.

Let k = 12l + 2 and let y = 7k − 9. Then S]k(52) has a basis of functions

gk,m(z) = q−m + bk(m, y − 5)qy−5 +
∞∑

n=y+1

bk(m,n)qn,

which are defined for all m ≥ −y, with gk,m(z) = 0 if m = 5− y.

Case 3: k ≡ 4 mod 12.

Let k = 12l + 4 and let y = 7k − 10. Then S]k(52) has a basis of functions

gk,m(z) = q−m +
∞∑

n=y+1

bk(m,n)qn,

which are defined for all m ≥ −y.

Case 4: k ≡ 6 mod 12.

Let k = 12l + 6 and let y = 7k − 9. Then S]k(52) has a basis of functions

gk,m(z) = q−m + bk(m, y − 1)qy−1 +
∞∑

n=y+1

bk(m,n)qn,

which are defined for all m ≥ −y, with gk,m(z) = 0 if m = 1− y.

Case 5: k ≡ 8 mod 12.

Let k = 12l + 8 and let y = 7k − 9. Then S]k(52) has a basis of functions

gk,m(z) = q−m + bk(m, y − 2)qy−2 +
∞∑

n=y+1

bk(m,n)qn,

which are defined for all m ≥ −y, with gk,m(z) = 0 if m = 2− y.
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Case 6: k ≡ 10 mod 12.

Let k = 12l + 10 and let y = 7k − 9. Then S]k(52) has a basis of functions

gk,m(z) = q−m + bk(m, y − 3)qy−3 +
∞∑

n=y+1

bk(m,n)qn,

which are defined for all m ≥ −y with gk,m(z) = 0 if m = 3− y.
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Chapter 3. Duality

Zagier duality expresses a relationship between the coefficients of fk,m(z) ∈ M ]
k(52) and of

those in g2−k,n(z) ∈ S]2−k(52). This relationship was first proved for certain half-integral

weight modular forms in [12]. This result hinges on the fact that forms in S]2(52) have no

constant terms. To show this we will note a few key facts.

3.1 The theta and slash operators commute

Recall that θ := q d
dq

= 1
2πi

d
dz

. Also, if f ∈M !
0(N), then θ(f) ∈M !

2(N). Recall for γ = [ a bc d ] ∈

SL2(Z) that f(z)|[γ]k = (cz+ d)−kf
(
az+b
cz+d

)
. The first theorem of this section relates how the

|[γ]k and the θ operator commute for weight 0, so that when we take the derivative of forms

from M ]
0(52), we know what happens at the cusps.

Theorem 3.1. Let f(z) ∈M0(N). Let γ = [ a bc d ] ∈ Γ. Then, we have

θ(f(z)|[γ]0) = (θ[f(z)])|[γ]2.

Proof. Let f(z) be a weakly modular function of weight 0. Let γ = [ a bc d ] ∈ Γ. Note that

since γ ∈ Γ, then ad− bc = 1. Then

θ[(f |[γ]0)(z)] = θ

[
(cz + d)0f

(
az + b

cz + d

)]
=

1

2πi
f ′
(
az + b

cz + d

)(
acz + ad− caz − bc

(cz + d)2

)
=

1

2πi
(cz + d)−2f ′

(
az + b

cz + d

)
(ad− bc) =

1

2πi
(cz + d)−2f ′

(
az + b

cz + d

)
.

Also note that θ increases the weight by 2. Hence,

(θ[f(z)]|[γ]2) =

[
1

2πi
f ′(z)

] ∣∣∣[γ]2 =
1

2πi
(cz + d)−2f ′

(
az + b

cz + d

)
.
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Now we can track the order of vanishing at the cusps from the derivatives. To do this

we first look at (θ[f(z)])|[γ]2 = θ(f(z)|[γ]0), where γ moves the cusp in question to where

we want it. Then, applying θ will annihilate any constant term. Note that if f(z)|γ is

holomorphic at infinity, then θ(f(z)|γ) = (θf(z))|γ vanishes at infinity. Thus, if f(z) ∈

M ]
0(52), then θf(z) ∈ S]2(52).

3.2 Forms in S]
2(52) have no constant terms

From SAGE (A.2) we can create the first few terms of our basis:

S]2(52) =
{
q5 − 1

3
q7 +O(q9), q4 − 2q6 +O(q9),

q3 − 2

3
q7 +O(q9), q2 − q6 + q8 +O(q9),

q − 4

3
q7 +O(q9), q−1 − 2

3
q7 +O(q9),

q−2 − 2q6 − q8 +O(q9) q−3 − 2

3
q7 +O(q9),

q−4 − 2q8 +O(q9), q−5 − 1

3
q7 +O(q9),

q−6 − 3q6 + q8 +O(q9), q−7 − 5

3
q7 +O(q9), . . .

}
.

There are no constant terms, which is a key point to proving duality.

Theorem 3.2. S]2(52) contains no forms with a constant term.

Proof. Take fk,m(z) ∈ M ]
k(52) and g2−k,n(z) ∈ S]2−k(52). Let F (z) = fk,mg2−k,n. Note that

F (z) ∈ S]2(52), and the leading power of F (z) is −m − n. Considering the basis elements

of S]2(52), we have leading terms q5, q4, q2, q1, q−1, and every other negative power (by

Theorem 2.7 there is no form starting with a constant term). If −m−n ≥ −5 we can verify

with SAGE that there are no constant terms in the first 10 basis elements of S]2(52), and we

know that F (z) is a linear combination of these first 10 basis elements. Hence F (z) has no

constant term.
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Now if −m− n ≤ −6, we know that the functions θ(f0,`) for ` ≤ −6 have no constant terms

and are in S]2(52) by Theorem 3.1. Thus, we can list {θ(f0,`)}∩ {g2,m(z) : −5 ≥ m ≥ −1} as

another basis for S]2(52). Therefore, we may form a linear combination of the θ(f2,`) along

with the first few forms of S]2−k(52) to create F (z). Thus no form in S]2(52) has a constant

term.

3.3 Proof of duality

With the previous results we can give the following theorem.

Theorem 3.3. Let the weight k ∈ 2Z be given. Let fk,m(z) ∈M ]
k(52) and g2−k,n(z) ∈ S]k(52).

Then we have
ak(m,n) = −b2−k(n,m).

Proof. Let fk,m(z) ∈M ]
k(52) and g2−k,n(z) ∈ S]k(52).

Case 1: k ≡ 0 mod 12.

Let k = 12l, and y = 7k = 84l. For S]2−k we have 2−k = −12l+2 and 84(l+1)+90) = 6−y.

Then our basis elements are in the form

fk,m(z) = q−m +

y−1∑
r=y−5

ak(m, r)q
r +

∞∑
r=y+1

ak(m, r)q
r, which is defined if m ≥ −y and is zero

if y − 5 < m < y − 1, and

g2−k,n(z) = q−n + b2−k(n,−y)q−y +
∞∑

r=6−y

b2−k(n, r)q
r, which is defined if n ≥ 5 − y and is

zero if n = y.

Then (fk,m(z))(g2−k,n(z)) =

(
q−m +

y−1∑
r=y−5

ak(m, r)q
r +

∞∑
r=y+1

ak(m, r)q
n

)(
q−n + b2−k(n,−y)q−y +

∞∑
r=6−y

b2−k(n, r)q
r

)

has constant term ak(m,n) + b2−k(n,m). Since the indices match, there are no other terms

which contribute to the constant term. By Theorem 3.2, ak(m,n) = −b2−k(n,m).

The other cases are similar. See Theorem 2.10 and Theorem 2.11 for the structure of the

basis elements in the omitted cases.
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Chapter 4. Generating Functions

Recall the definition of the generating function.

Definition 4.1. Let fk,n(z) be basis elements for M ]
k(52) as found in Theorem 2.10. Then

the generating function Fk(z, τ) is given by

Fk(z, τ) =
∞∑

n=−n0

fk,n(τ)qn

where n0 is the greatest order of vanishing at infinity of any form in M ]
k(52).

By taking the function ϕ6(z) = q−6 + 2q−4 + q−2 + 2q2 + O(q6) (equation 2.2), we can

multiply this weight 0 form by any basis element fk,m(z) and with the tool of duality in

Theorem 3.3, we will create a recurrence relation that will be used to get a closed form of

the generating function for our basis elements. Here we give an exposition on a generating

function that behaves akin to those in lower levels.

Theorem 4.2. Let k = 12l+10 and let y = 84l+66. Let Fk(z, τ) =
∑∞

n=−y fk,n(τ)qn. Then

Fk(z, τ) =

(ϕ6(z)− ϕ6(τ))−1 ·
(
fk,5−y(τ)g2−k,y+1(z) + fk,4−y(τ)g2−k,y+2(z) + fk,3−y(τ)g2−k,y+3(z)

+ 2fk,3−y(τ)g2−k,y+1(z) + fk,2−y(τ)g2−k,y+4(z) + 2fk,2−y(τ)g2−k,y+2(z)

+ fk,1−y(τ)g2−k,y+5(z) + 2fk,1−y(τ)g2−k,y+3(z) + fk,1−y(τ)g2−k,y+1(z)

+ fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z) + fk,−y(τ)g2−k,y+2(z)
)
.
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Proof. Let k = 12l + 10 and let y = 84` + 66. For the 2− k weight, 2 − k = −12`− 8 and

19 + 84(−`− 1) = −y. Then

fk,m(z) = q−m +
∞∑

n=y+1

ak(m,n)qn is defined for all m ≥ −y and

g2−k,m(z) = q−m +
∞∑

n=−y

b2−k(m,n)qn is defined for all m ≥ y + 1.

To obtain the recurrence relation multiply ϕ6(z) by a general basis element fk,m(z).

ϕ6(z)fk,m(z) =

(
q−6 + 2q−4 + q−2 +

∑
r≥2

crq
r

)(
q−m +

∞∑
n=y+1

ak(m,n)qn

)

=q−6−m + 2q−4−m + q−2−m +
∑
r≥2

crq
r−m +

∞∑
n=y+1

ak(m,n)qn−6

+ 2
∞∑

n=y+1

ak(m,n)qn−4 +
∞∑

n=y+1

ak(m,n)qn−2 +
∞∑

n=y+1

ak(m,n)qn
∞∑
r=2

crq
r.

Note that ϕ6(z)fk,m(z) ∈ M ]
k(52), and has leading term q−m−6. Hence, we can write the

product ϕ6(z)fk,m(z) as the basis element fk,m+6 and a linear combination of a few other

basis elements. Using the canonical basis, q−n is identified with fk,n(z). We then list these

basis elements in a linear combination. For convenience we will omit the (z) part of the

function notation.

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2 −
m+y∑
r=2

crfk,m−r −
y+6∑

n=y+1

ak(m,n)fk,6−n

−
y+4∑

n=y+1

2ak(m,n)fk,4−n −
y+2∑

n=y+1

ak(m,n)fk,2−n.

Further grouping of the basis elements gives
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fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

− (ak(m, y + 1))fk,5−y − (ak(m, y + 2))fk,4−y

− (ak(m, y + 3) + 2ak(m, y + 1))fk,3−y

− (ak(m, y + 4) + 2ak(m, y + 2))fk,2−y

− (ak(m, y + 5) + 2ak(m, y + 3) + ak(m, y + 1))fk,1−y

− (ak(m, y + 6) + 2ak(m, y + 4) + ak(m, y + 2))fk,−y

−
m+y∑
r=2

crfk,m−r.

Using the result of duality, Theorem 3.3, we have the following recurrence relation:

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ b2−k(y + 1,m)fk,5−y + b2−k(y + 2,m)fk,4−y

+ (b2−k(y + 3,m) + 2b2−k(y + 1,m))fk,3−y

+ (b2−k(y + 4,m) + 2b2−k(y + 2,m))fk,2−y

+ (b2−k(y + 5,m) + 2b2−k(y + 3,m) + b2−k(y + 1,m))fk,1−y

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

−
m+y∑
r=2

crfk,m−r.

Now, we compute the generating function.

Fk(z, τ) =Fk =
∞∑

n=−y

fk,n(τ)qn =
∞∑

n=−y−6

fk,n+6(τ)qn+6

=fk,−y(τ)q−y + fk,1−y(τ)q1−y + fk,2−y(τ)q2−y + fk,3−y(τ)q3−y + fk,4−y(τ)q4−y

+ fk,5−y(τ)q5−y +
∞∑

n=−y

fk,n+6(τ)qn+6,

where we separated the first terms to get to a point where we could use the recurrence
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relation. By substituting in the recurrence relation and simplifying we have

Fk =fk,−y(τ)q−y + fk,1−y(τ)q1−y + fk,2−y(τ)q2−y + fk,3−y(τ)q3−y

+ fk,4−y(τ)q4−y + fk,5−y(τ)q5−y

+
∞∑

n=−y

[
(ϕ6)(τ)fk,n(τ)− 2fk,n+4(τ)− fk,n+2(τ)

+ (b2−k(y + 1, n))fk,5−y(τ) + (b2−k(y + 2, n))fk,4−y(τ)

+ (b2−k(y + 3, n) + 2b2−k(y + 1, n))fk,3−y(τ)

+ (b2−k(y + 4, n) + 2b2−k(y + 2, n))fk,2−y(τ)

+ (b2−k(y + 5, n) + 2b2−k(y + 3, n) + b2−k(y + 1, n))fk,1−y(τ)

+ (b2−k(y + 6, n) + 2b2−k(y + 4, n) + b2−k(y + 2, n))fk,−y(τ)

−
n+y∑
i=2

cifk,n−i(τ)

]
qn+6.
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Summing over each term gives

Fk =fk,−y(τ)q−y + fk,1−y(τ)q1−y + fk,2−y(τ)q2−y + fk,3−y(τ)q3−y

+ fk,4−y(τ)q4−y + fk,5−y(τ)q5−y

+ (ϕ6)(τ)q6
∞∑

n=−y

fk,n(τ)qn − 2q6
∞∑

n=−y

fk,n+4(τ)qn − q6
∞∑

n=−y

fk,n+2(τ)qn

+ q6fk,5−y(τ)
∞∑

n=−y

b2−k(y + 1, n)qn + q6fk,4−y(τ)
∞∑

n=−y

b2−k(y + 2, n)qn

+ q6fk,3−y(τ)
∞∑

n=−y

(b2−k(y + 3, n) + 2b2−k(y + 1, n))qn

+ q6fk,2−y(τ)
∞∑

n=−y

(b2−k(y + 4, n) + 2b2−k(y + 2, n))qn

+ q6fk,1−y(τ)
∞∑

n=−y

(b2−k(y + 5, n) + 2b2−k(y + 3, n) + b2−k(y + 1, n))qn

+ q6fk,−y(τ)
∞∑

n=−y

(b2−k(y + 6, n) + 2b2−k(y + 4, n) + b2−k(y + 2, n))qn

− q6
∞∑

n=−y

n+y∑
i=2

cifk,n−i(τ)qn.

Now we identify the basis elements of S]2−k(52) and replace the sums above. We will also

identify the generating function and replace it where necessary.
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Fk =fk,−y(τ)q−y + fk,1−y(τ)q1−y + fk,2−y(τ)q2−y + fk,3−y(τ)q3−y

+ fk,4−y(τ)q4−y + fk,5−y(τ)q5−y

+ ϕ6(τ)q6Fk − 2q2
(
Fk −

4−y∑
n=−y

fk,n(τ)qn
)
− q4

(
Fk −

2−y∑
n=−y

fk,n(τ)qn
)

+ q6fk,5−y(τ)(g2−k,y+1(z)− q−y−1) + q6fk,4−y(τ)(g2−k,y+2(z)− q−y−2)

+ q6fk,3−y(τ)(g2−k,y+3(z)− q−y−3) + 2q6fk,3−y(τ)(g2−k,y+1(z)− q−y−1)

+ q6fk,2−y(τ)(g2−k,y+4(z)− q−y−4) + 2q6fk,2−y(τ)(g2−k,y+2(z)− q−y−2)

+ q6fk,1−y(τ)(g2−k,y+5(z)− q−y−5) + 2q6fk,1−y(τ)(g2−k,y+3(z)− q−y−3)

+ q6fk,1−y(τ)(g2−k,y+1(z)− q−y−1)

+ q6fk,−y(τ)(g2−k,y+6(z)− q−y−6) + 2q6fk,−y(τ)(g2−k,y+4(z)− q−y−4)

+ q6fk,−y(τ)(g2−k,y+2(z)− q−y−2)

− q6
∞∑

n=−y

n+y∑
i=2

cifk,n−i(τ)qn.

Note that −q6
( ∞∑
n=−y

fk,n(τ)qn
)( ∞∑

i=0

ciq
i

)
= −q6

(
Fk

)(
ϕ6(z)− q−6 − 2q−4 − q−2

)
.

Substituting this after canceling a few items, we have the following.

Fk =ϕ6(τ)q6Fk − 2q2Fk − q4Fk

+ q6fk,5−y(τ)g2−k,y+1(z) + q6fk,4−y(τ)g2−k,y+2(z)

+ q6fk,3−y(τ)g2−k,y+3(z) + 2q6fk,3−y(τ)g2−k,y+1(z)

+ q6fk,2−y(τ)g2−k,y+4(z) + 2q6fk,2−y(τ)g2−k,y+2(z)

+ q6fk,1−y(τ)g2−k,y+5(z) + 2q6fk,1−y(τ)g2−k,y+3(z) + q6fk,1−y(τ)g2−k,y+1(z)

+ q6fk,−y(τ)g2−k,y+6(z) + 2q6fk,−y(τ)g2−k,y+4(z) + q6fk,−y(τ)g2−k,y+2(z)

+ Fk − q6ϕ6(z)Fk + 2q2Fk + q4Fk.
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Regrouping terms and factoring yields:

(ϕ6(z)− ϕ6(τ))Fk =fk,5−y(τ)g2−k,y+1(z) + fk,4−y(τ)g2−k,y+2(z)

+ fk,3−y(τ)g2−k,y+3(z) + 2fk,3−y(τ)g2−k,y+1(z)

+ fk,2−y(τ)g2−k,y+4(z) + 2fk,2−y(τ)g2−k,y+2(z)

+ fk,1−y(τ)g2−k,y+5(z) + 2fk,1−y(τ)g2−k,y+3(z) + fk,1−y(τ)g2−k,y+1(z)

+ fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z) + fk,−y(τ)g2−k,y+2(z).

Dividing by (ϕ6(z)− ϕ6(τ)) gives the desired result.

4.1 Challenges in other weights

The need for h(z) = q84 + O(q86) (see equation 2.1) to move up and down weight has split

most of our work into a residue system modulo 12. Likewise, the work on the generating

functions is also split into cases for the respective weight modulo 12. Note that the recurrence

relation in each case is similar, but the indexing on the bases elements fk,i−y is not consistent.

This is due to how these basis elements are defined. Thus, the recurrence relation can change

subtly. This same indexing of the basis elements causes the infinite sum in the definition of

the generating function to be rewritten to match the indices where the basis elements are

defined.

We will give the proof in one more case to give the reader a chance to view the recurrence

relation being substituted back in to cancel terms, and the difference in the basis elements.
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Theorem 4.3. Let k = 2+12l and y = 7k−1. Let Fk(z, τ) = fk,−y(τ)q−y+
∑∞

n=5−y fk,n(τ)qn.

Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + 2fk,5−y(τ)g2−k,y−1(z) + fk,5−y(τ)g2−k,y−3(z)

+ fk,5−y(τ)g2−k,y+1(z) + 2fk,6−y(τ)g2−k,y−2(z) + fk,6−y(τ)g2−k,y−4(z)

+ fk,7−y(τ)g2−k,y−1(z) + 2fk,7−y(τ)g2−k,y−3(z) + fk,8−y(τ)g2−k,y−2(z)

+ 2fk,8−y(τ)g2−k,y−4(z) + fk,9−y(τ)g2−k,y−3(z) + fk,10−y(τ)g2−k,y−4(z)

+ 2fk,−y(τ)g2−k,y−2(z)

)
.

Proof. Let k = 2+12l and y = 7k−1. For the 2−k weight, 2−k = −12` and 76+84(−`−1) =

5− y. Then

fk,m(z) = q−m +

y−1∑
n=y−4

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn is defined for all m ≥ 1− y and is 0 if

m = 4− y, . . . , 1− y, and

g2−k,m(z) = q−m + b2−k(m,−y)q−y +
∞∑

n=5−y

b2−k(m,n)qn is defined for all m ≥ y − 4 and is 0

if m = y.

Noting ϕ6(z) = q−6 + 2q−4 + q−2 + 2q2 + 3q6 + 2q8 + 2q12 + 2q14 +O(q16), we have no terms

of odd power for small powers of q. If ϕ6(z)fk,m(z) = q−6 + 2q−4 + q−2 +
∑
r≥2

crq
r, then

c4 = c10 = 0.

Note that we will drop the (z) function notation for convenience.

28



To obtain the recurrence relation we have:

ϕ6fk,m =

(
q−6 + 2q−4 + q−2 +

∑
r≥2

crq
r

)(
q−m +

y−1∑
n=y−4

ak(m,n)qn +
∞∑

n=y+1

ak(m,n)qn

)

=q−6−m +

y−1∑
n=y−4

ak(m,n)qn−6 +
∞∑

n=y+1

ak(m,n)qn−6

+ 2q−4−m + 2

y−1∑
n=y−4

ak(m,n)qn−4 + 2
∞∑

n=y+1

ak(m,n)qn−4

+ q−2−m +

y−1∑
n=y−4

ak(m,n)qn−2 +
∞∑

n=y+1

ak(m,n)qn−2

+ ak(m, y − 4)
∑
r≥2

crq
r+y−4 + ak(m, y − 3)

∑
r≥2

crq
r+y−3

+ ak(m, y − 2)
∑
r≥2

crq
r+y−2 + ak(m, y − 1)

∑
r≥2

crq
r+y−1

+
∞∑
r=2

crq
r−m +

∞∑
n=y+1

ak(m,n)qn
∑
r≥2

crq
r.

If n ≥ y + 1 we will remove the terms containing a qn that are accounted for in the infinite

sum in the general basis element. Also, using the fact that c2 = 2, cr = 0 for r = 3, 4, 5, and

fk,1−y(z) = · · · = fk,4−y(z) = 0, we rewrite the sums.

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

−
y−1∑

n=y−4

ak(m,n)fk,6−n − ak(m, y + 1)fk,5−y − ak(m, y + 6)fk,−y

− 2

y−1∑
n=y−4

ak(m,n)fk,4−n − 2ak(m, y + 4)fk,−y

−
y−3∑

n=y−4

ak(m,n)fk,2−n − ak(m, y + 2)fk,−y

− cm+yfk,−y −
y+m−5∑
r=2

crfk,m−r.
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Further grouping gives

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

− (ak(m, y + 6) + 2ak(m, y + 4) + ak(m, y + 2))fk,−y

− (2ak(m, y − 1) + ak(m, y − 3) + ak(m, y + 1))fk,5−y

− (2ak(m, y − 2) + ak(m, y − 4))fk,6−y

− (ak(m, y − 1) + 2ak(m, y − 3))fk,7−y

− (ak(m, y − 2) + 2ak(m, y − 4))fk,8−y

− ak(m, y − 3)fk,9−y

− ak(m, y − 4)fk,10−y

− ak(m, y − 2)c2fk,−y − cm+yfk,−y −
y+m−5∑
r=2

crfk,m−r.

Using duality, we have the following recurrence relation.

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

+ (2b2−k(y − 1,m) + b2−k(y − 3,m) + b2−k(y + 1,m))fk,5−y

+ (2b2−k(y − 2,m) + b2−k(y − 4,m))fk,6−y

+ (b2−k(y − 1,m) + 2b2−k(y − 3,m))fk,7−y

+ (b2−k(y − 2,m) + 2b2−k(y − 4,m))fk,8−y

+ b2−k(y − 3,m)fk,9−y

+ b2−k(y − 4,m)fk,10−y

+ b2−k(y − 2,m)c2fk,−y − cm+yfk,−y −
y+m−5∑
r=2

crfk,m−r.
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Now, we compute the generating function, substitute in the recurrence relation, and simplify.

Fk(z, τ) =Fk = fk,−y(τ)q−y +
∞∑

n=5−y

fk,n(τ)qn = fk,−y(τ)q−y +
∞∑

n=−1−y

fk,n+6(τ)qn+6

=fk,−y(τ)q−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y + fk,8−y(τ)q8−y

+ fk,9−y(τ)q9−y + fk,10−y(τ)q10−y +
∞∑

n=5−y

fk,n+6(τ)qn+6.

Fk =fk,−y(τ)q−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y + fk,8−y(τ)q8−y

+ fk,9−y(τ)q9−y + fk,10−y(τ)q10−y

+
∞∑

n=5−y

[
ϕ6(τ)fk,n(τ)− 2fk,n+4(τ)− fk,n+2(τ)

+ (b2−k(y + 6, n) + 2b2−k(y + 4, n) + b2−k(y + 2, n))fk,−y(τ)

+ (2b2−k(y − 1, n) + b2−k(y − 3, n) + b2−k(y + 1, n))fk,5−y(τ)

+ (2b2−k(y − 2, n) + b2−k(y − 4, n))fk,6−y(τ)

+ (b2−k(y − 1, n) + 2b2−k(y − 3, n))fk,7−y(τ)

+ (b2−k(y − 2, n) + 2b2−k(y − 4, n))fk,8−y(τ)

+ b2−k(y − 3, n)fk,9−y(τ)

+ b2−k(y − 4, n)fk,10−y(τ)

+ c2b2−k(y − 2, n)fk,−y(τ)− cn+yfk,−y(τ)−
y+n−5∑
r=2

crfk,n−r(τ)

]
qn+6.
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Summing over each term gives

Fk =fk,−y(τ)q−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y + fk,8−y(τ)q8−y

+ fk,9−y(τ)q9−y + fk,10−y(τ)q10−y

+ ϕ6(τ)
∞∑

n=5−y

fk,n(τ)qn+6 − 2
∞∑

n=5−y

fk,n+4(τ)qn+6 −
∞∑

n=5−y

fk,n+2(τ)qn+6

+ fk,−y(τ)
∞∑

n=5−y

(b2−k(y + 6, n) + 2b2−k(y + 4, n) + b2−k(y + 2, n))qn+6

+ fk,5−y(τ)
∞∑

n=5−y

(2b2−k(y − 1, n) + b2−k(y − 3, n) + b2−k(y + 1, n))qn+6

+ fk,6−y(τ)
∞∑

n=5−y

(2b2−k(y − 2, n) + b2−k(y − 4, n))qn+6

+ fk,7−y(τ)
∞∑

n=5−y

(b2−k(y − 1, n) + 2b2−k(y − 3, n))qn+6

+ fk,8−y(τ)
∞∑

n=5−y

(b2−k(y − 2, n) + 2b2−k(y − 4, n))qn+6

+ fk,9−y(τ)
∞∑

n=5−y

b2−k(y − 3, n)qn+6 + fk,10−y(τ)
∞∑

n=5−y

b2−k(y − 45, n)qn+6

+ c2fk,−y(τ)
∞∑

n=5−y

b2−k(y − 2, n)qn+6 −
∞∑

n=5−y

cn+yfk,−y(τ)qn+6 −
∞∑

n=5−y

y+n−5∑
r=2

crfk,n−r(τ)qn+6.
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Note that the first 2 terms of the double sum are 0 since the fk,m basis elements are 0 when

m = 5− y, . . . , 2− y. Changing the double sum to a product gives

∞∑
n=5−y

y+n−5∑
r=2

crfk,n−r(τ)qn+6 =
∞∑

n=7−y

y+n−5∑
r=2

crfk,n−r(τ)qn+6

= q6

(
∞∑

n=−y

fk,n−r(τ)qn

)(
∞∑
r=2

crq
r

)

= q6
(
Fk − fk,−yq−y

) (
ϕ6(z)− q−6 − 2q−4 − q−2

)
.

As for the last sum, we have

fk,−y(τ)
∞∑

n=5−y

cn+yq
n+6 = fk,−y(τ)q6

(
∞∑

n=5−y

cn+yq
n

)
= fk,−y(τ)q6−y

(
∞∑
n=5

cnq
n

)

= fk,−y(τ)q6−y
(
ϕ6(z)− q−6 − 2q−4 − q−2 − c2q2

)
.
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Now we identify the basis elements of S]2−k(52) and pieces of the generating function, then

replace them. This gives us

Fk =fk,−y(τ)q−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y + fk,8−y(τ)q8−y

+ fk,9−y(τ)q9−y + fk,10−y(τ)q10−y

+ ϕ6(τ)
(
Fk − fk,−y(τ)q−y

)
q6 − 2q2

(
Fk − fk,−y(τ)q−y −

8−y∑
n=5−y

fk,n(τ)qn

)

− q4
(
Fk − fk,−y(τ)q−y −

6−y∑
n=5−y

fk,n(τ)qn

)

+ fk,−y(τ)(g2−k,y+6(z)− q−6−y − b2−k(y + 6,−y)q−y)q6

+ fk,−y(τ)(2g2−k,y+4(z)− 2q−4−y − 2b2−k(y + 4,−y)q−y)q6

+ fk,−y(τ)(g2−k,y+2(z)− q−2−y − b2−k(y + 2,−y)q−y)q6

+ fk,5−y(τ)(2g2−k,y−1(z)− 2q1−y − 2b2−k(y − 1,−y)q−y)q6

+ fk,5−y(τ)(g2−k,y−3(z)− q3−y − b2−k(y − 3,−y)q−y)q6

+ fk,5−y(τ)(g2−k,y+1(z)− q−1−y − b2−k(y + 1,−y)q−y)q6

+ fk,6−y(τ)(2g2−k,y−2(z)− 2q2−y − 2b2−k(y − 2,−y)q−y)q6

+ fk,6−y(τ)(g2−k,y−4(z)− q4−y − b2−k(y − 4,−y)q−y)q6

+ fk,7−y(τ)(g2−k,y−1(z)− q1−y − b2−k(y − 1,−y)q−y)q6

+ fk,7−y(τ)(2g2−k,y−3(z)− 2q3−y − 2b2−k(y − 3,−y)q−y)q6

+ fk,8−y(τ)(g2−k,y−2(z)− q2−y − b2−k(y − 2,−y)q−y)q6

+ fk,8−y(τ)(2g2−k,y−4(z)− 2q4−y − 2b2−k(y − 4,−y)q−y)q6

+ fk,9−y(τ)(g2−k,y−3(z)− q3−y − b2−k(y − 3,−y)q−y)q6

+ fk,10−y(τ)(g2−k,y−4(z)− q4−y − b2−k(y − 4,−y)q−y)q6

+ c2fk,−y(τ)(g2−k,y−2(z)− q2−y − b2−k(y − 2,−y)q−y)q6

− fk,−y(τ)q−yq6
(
ϕ6(z)− q−6 − 2q−4 − q−2 − c2q2

)
− q6

(
Fk − fk,−yq−y

) (
ϕ6(z)− q−6 − 2q−4 − q−2

)
.
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Using the recurrence relation on fk,−y+6(z), we note that the sum yields

fk,−m+6(τ) =ϕ6(τ)fk,−y(τ)− 2fk,4−y(τ)− fk,2−y(τ)

+ (b2−k(y + 6,−y) + 2b2−k(y + 4,−y) + b2−k(y + 2,−y))fk,−y(τ)

+ (2b2−k(y − 1,−y) + b2−k(y − 3,−y) + b2−k(y + 1,−y))fk,5−y(τ)

+ (2b2−k(y − 2,−y) + b2−k(y − 4,−y))fk,6−y(τ)

+ (b2−k(y − 1,−y) + 2b2−k(y − 3,−y))fk,7−y(τ)

+ (b2−k(y − 2,−y) + 2b2−k(y − 4,−y))fk,8−y(τ)

+ b2−k(y − 3,−y)fk,9−y(τ) + b2−k(y − 4,−y)fk,10−y(τ)

+ b2−k(y − 2,−y)c2fk,−y(τ).

Multiplying this by q6−y and solving for ϕ6(τ)fk,−y(τ)q6−y, we will now replace the extra

terms above.

35



Fk =fk,−y(τ)q−y + fk,5−y(τ)q5−yfk,7−y(τ)q7−y + fk,8−y(τ)q8−y

+ fk,9−y(τ)q9−y + fk,10−y(τ)q10−y + ϕ6(τ)fk,−y(τ)q6−y

+ ϕ6(τ)
(
Fk − fk,−y(τ)q−y

)
q6 − 2q2

(
Fk − fk,−y(τ)q−y −

8−y∑
n=5−y

fk,n(τ)qn

)

− q4
(
Fk − fk,−y(τ)q−y −

6−y∑
n=5−y

fk,n(τ)qn

)

+ fk,−y(τ)(g2−k,y+6(z)− q−6−y)q6

+ fk,−y(τ)(2g2−k,y+4(z)− 2q−4−y)q6

+ fk,−y(τ)(g2−k,y+2(z)− q−2−y)q6

+ fk,5−y(τ)(2g2−k,y−1(z)− 2q1−y)q6

+ fk,5−y(τ)(g2−k,y−3(z)− q3−y)q6

+ fk,5−y(τ)(g2−k,y+1(z)− q−1−y)q6

+ fk,6−y(τ)(2g2−k,y−2(z)− 2q2−y)q6

+ fk,6−y(τ)(g2−k,y−4(z)− q4−y)q6

+ fk,7−y(τ)(g2−k,y−1(z)− q1−y)q6

+ fk,7−y(τ)(2g2−k,y−3(z)− 2q3−y)q6

+ fk,8−y(τ)(g2−k,y−2(z)− q2−y)q6

+ fk,8−y(τ)(2g2−k,y−4(z)− 2q4−y)q6

+ fk,9−y(τ)(g2−k,y−3(z)− q3−y)q6

+ fk,10−y(τ)(g2−k,y−4(z)− q4−y)q6

+ c2fk,−y(τ)(g2−k,y−2(z)− q2−y)q6

− fk,−y(τ)q−yq6
(
ϕ6(z)− q−6 − 2q−4 − q−2 − c2q2

)
− q6

(
Fk − fk,−yq−y

) (
ϕ6(z)− q−6 − 2q−4 − q−2

)
.
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Canceling yields:

0 =ϕ6(τ) (Fk) q
6 − q6Fk (ϕ6(z)) + fk,−y(τ)g2−k,y+6(z)q6 + 2fk,−y(τ)g2−k,y+4(z)q6

+ fk,−y(τ)g2−k,y+2(z)q6 + 2fk,5−y(τ)g2−k,y−1(z)q6 + fk,5−y(τ)g2−k,y−3(z)q6

+ fk,5−y(τ)g2−k,y+1(z)q6 + 2fk,6−y(τ)g2−k,y−2(z)q6 + fk,6−y(τ)g2−k,y−4(z)q6

+ fk,7−y(τ)g2−k,y−1(z)q6 + 2fk,7−y(τ)g2−k,y−3(z)q6 + fk,8−y(τ)g2−k,y−2(z)q6

+ 2fk,8−y(τ)g2−k,y−4(z)q6 + fk,9−y(τ)g2−k,y−3(z)q6 + fk,10−y(τ)g2−k,y−4(z)q6

+ c2fk,−y(τ)g2−k,y−2(z)q6.

Therefore, setting c2 = 2 and solving for Fk gives the generating function.

4.2 The generating functions

We will list all of the generating functions here but save the proofs for the other cases for the

appendix. Again the key change in these generating functions is when we have undefined

basis elements after the fk,−y term (cf. Theorem 2.10), since these determine the number of

terms we must break off of the summation before we can use the recurrence relation.

Theorem 4.4. Case 1: k ≡ 0 mod 12. Let k = 12l, and y = 7k = 84l. Let Fk(z, τ) =

fk,−y(τ)q−y +
∑∞

n=6−y fk,n(τ)qn. Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + 2fk,6−y(τ)g2−k,y−2(z) + fk,6−y(τ)g2−k,y−4(z)

+ fk,7−y(τ)g2−k,y−1(z) + 2fk,7−y(τ)g2−k,y−3(z) + fk,7−y(τ)g2−k,y−5(z)

+ fk,8−y(τ)g2−k,y−2(z) + 2fk,8−y(τ)g2−k,y−4(z) + fk,9−y(τ)g2−k,y−3(z)

+ 2fk,9−y(τ)g2−k,y−5(z) + fk,10−y(τ)g2−k,y−4(z) + fk,11−y(τ)g2−k,y−5(z)

+ 2fk,−y(τ)g2−k,y−2(z)
)
.
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Case 2: k ≡ 2 mod 12. Let k = 2 + 12l and y = 7k − 1. Let Fk(z, τ) = fk,−y(τ)q−y +∑∞
n=5−y fk,n(τ)qn. Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + 2fk,5−y(τ)g2−k,y−1(z) + fk,5−y(τ)g2−k,y−3(z)

+ fk,5−y(τ)g2−k,y+1(z) + 2fk,6−y(τ)g2−k,y−2(z) + fk,6−y(τ)g2−k,y−4(z)

+ fk,7−y(τ)g2−k,y−1(z) + 2fk,7−y(τ)g2−k,y−3(z) + fk,8−y(τ)g2−k,y−2(z)

+ 2fk,8−y(τ)g2−k,y−4(z) + fk,9−y(τ)g2−k,y−3(z) + fk,10−y(τ)g2−k,y−4(z)

+ 2fk,−y(τ)g2−k,y−2(z)

)
.

Case 3: k ≡ 4 mod 12. Let k = 12l + 4 and y = 7k − 2. Let Fk(z, τ) = fk,−y(τ)q−y +∑∞
n=4−y fk,n(τ)qn. Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + fk,4−y(τ)g2−k,y+2(z) + fk,4−y(τ)g2−k,y−2(z)

+ 2fk,5−y(τ)g2−k,y−1 + fk,5−y(τ)g2−k,y−3(z) + fk,5−y(τ)g2−k,y+1(z)

+ 2fk,6−y(τ)g2−k,y−2(z) + fk,7−y(τ)g2−k,y−1(z) + 2fk,7−y(τ)g2−k,y−3

+ fk,8−y(τ)g2−k,y−2(z) + fk,9−y(τ)g2−k,y−3(z) + 2fk,−y(τ)g2−k,y−2(z)

)
.
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Case 4: k ≡ 6 mod 12. Let k = 12l + 6 and y = 84l + 39. Let Fk(z, τ) = fk,−y(τ)q−y +∑∞
n=3−y fk,n(τ)qn. Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + fk,3−y(τ)g2−k,y+3(z) + 2fk,3−y(τ)g2−k,y+1(z)

+ fk,3−y(τ)g2−k,y−1(z) + fk,4−y(τ)g2−k,y+2(z) + fk,4−y(τ)g2−k,y−2(z)

+ 2fk,5−y(τ)g2−k,y−1(z) + fk,5−y(τ)g2−k,y+1(z) + 2fk,6−y(τ)g2−k,y−2(z)

+ fk,7−y(τ)g2−k,y−1(z) + fk,8−y(τ)g2−k,y−2(z) + 2fk,−y(τ)g2−k,y−2(z)

)
.

Case 5: k ≡ 8 mod 12. Let k = 12l + 8 and y = 84l + 52. Fk(z, τ) = fk,−y(τ)q−y +∑∞
n=2−y fk,n(τ)qn. Then

Fk(z, τ) =
(
ϕ6(z)− ϕ6(τ)

)−1
·
(
fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z) + fk,2−y(τ)g2−k,y+4(z) + 2fk,2−y(τ)g2−k,y+2(z)

+ fk,3−y(τ)g2−k,y+3(z) + 2fk,3−y(τ)g2−k,y+1(z) + fk,3−y(τ)g2−k,y−1(z)

+ fk,4−y(τ)g2−k,y+2(z) + 2fk,5−y(τ)g2−k,y−1(z) + fk,5−y(τ)g2−k,y+1(z)

+ fk,7−y(τ)g2−k,y−1(z)

)
.

Case 6: k ≡ 10 mod 12. Let k = 12l + 10 and let y = 84l + 66. Let Fk(z, τ) =∑∞
n=−y fk,n(τ)qn. Then

Fk(z, τ) =(ϕ6(z)− ϕ6(τ))−1 ·
(
fk,5−y(τ)g2−k,y+1(z) + fk,4−y(τ)g2−k,y+2(z)

+ fk,3−y(τ)g2−k,y+3(z) + 2fk,3−y(τ)g2−k,y+1(z) + fk,2−y(τ)g2−k,y+4(z)

+ 2fk,2−y(τ)g2−k,y+2(z) + fk,1−y(τ)g2−k,y+5(z) + 2fk,1−y(τ)g2−k,y+3(z)

+ fk,1−y(τ)g2−k,y+1(z) + fk,−y(τ)g2−k,y+6(z) + 2fk,−y(τ)g2−k,y+4(z)

+ fk,−y(τ)g2−k,y+2(z)
)
.
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Chapter 5. Further work and questions

This research has extended some of the previous known facts from the lower levels into a

level spanned by eta-quotients, and whose basis elements have fractional Fourier coefficients.

The techniques used here should be applicable in other levels.

Some further work that could be done includes extending the techniques used in lower

levels to study the divisibility of coefficients in spaces whose basis elements have fractional

coefficients. Additionally, it would be interesting to identify which spaces are like level 52

(those that are spanned by eta-quotients and have fractional Fourier coefficients in their basis

elements) which have forms for some weight that have all their zeros at infinity. Another

natural question is to identify lower levels spanned by eta-quotients without fractional Fourier

coefficients and determine if these techniques also apply there.

Further questions to consider include finding a condition to tell when a space contains

a form with all of its zeros at infinity, studying whether the genus affects the weight where

we will find this form, and listing the conditions when the weight zero form with a pole of

minimal order can be found by using eta-quotients.

Though the authors of [1], [3], [6], [7], and [8] gave congruences for the coefficients in the

lower levels, this thesis does not treat that particular subject. However, we will provide a

few conjectures on the subject from our observations.

Conjecture 5.1. For any basis element fk,m(z) ∈ M ]
k(52), if m is odd, then an(m,n) = 0

for n even. Likewise if m is even then an(m,n) = 0 for all n odd.

Conjecture 5.2. Let fk,m(z) ∈ M ]
k(52). If fk,m(z) has fractional coefficients, then m must

be odd, and the denominator of all the non-leading term coefficients is the same.
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Appendix A. Computer codes

A.1 Eta-quotient finder

R.<q> = LaurentSeriesRing(QQ)

def eta from tuple(myTuple, N, prec): # N is the level

w = qexp eta(QQ[[q]],prec)

e = 0

prod = 1

divList = divisors(N)

for i in range(len(myTuple)):

e += divList[i]*myTuple[i]

prod *= w(qˆdivList[i])ˆmyTuple[i]

return qˆ(int(e/24))*prod

def order vanishing(etaTuple, N, d): #d represents the denominator of the cusp

if (d == 0):

e = 0

divList = divisors(N)

for i in range(len(etaTuple)):

e += divList[i]*etaTuple[i] # the leading term is qˆ(sum delta * r delta)/24

e /= 24

return e

else:

sum = 0

divList = divisors(N)

g = gcd(d,N/d)

for i in range(len(divList)):

sum += (gcd(d,divList[i])ˆ2*etaTuple[i]/(g*d*divList[i]))
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sum *= (N/24)

return sum

# Note: order vanishing() when d=0 is the leading power of the fourier expansion

def eta weight(myTuple): # this assumes that N is understood and therefore doesn’t

depend on it.

sum = 0

for i in myTuple:

sum += i

return sum / 2

leadingPower = -6

MAX =7 # usually |leadingPower|+1

numbers = range(-MAX,MAX+1)

def checkNum(r1,r2,r4,r13,r26,r52):

if (((r2+r26)%2)==1 or ((r13+r26+r52)%2)==1):

return false

myTuple = (r1,r2,r4,r13,r26,r52)

if (order vanishing(myTuple, 52, 0) != leadingPower):return false

for d in [1,2,4,13,26]:

ord = order vanishing(myTuple, 52, d)

if (ord<0 or ord>abs(leadingPower) or ord.is integer() == false):

return false

return true

import time

t0 = time.time()

myList=[]
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for r1 in numbers:

print r1

for r2 in numbers:

for r4 in numbers:

for r13 in numbers:

for r26 in numbers:

r52 = -r1-r2-r4-r13-r26 #if not weight 0 do 2*weight minus all else

if (checkNum(r1,r2,r4,r13,r26,r52) == true):

myList.append((r1,r2,r4,r13,r26,r52))

print(r1,r2,r4,r13,r26,r52)

t1 = time.time()

t1-t0
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A.2 Generating S]
2(52)

R.<q> = LaurentSeriesRing(QQ)

def eta from tuple(myTuple, N, prec): # N is the level

w = qexp eta(QQ[[q]],prec)

e = 0

prod = 1

divList = divisors(N)

for i in range(len(myTuple)):

e += divList[i]*myTuple[i]

prod *= w(qˆdivList[i])ˆmyTuple[i]

return qˆ(int(e/24))*prod

def order vanishing(etaTuple, N, d): #d represents the denominator of the cusp we are

looking at

if (d == 0):

e = 0

divList = divisors(N)

for i in range(len(etaTuple)):

e += divList[i]*etaTuple[i] # the leading term is qˆ(sum delta * r delta)/24

e /= 24

return e

else:

sum = 0

divList = divisors(N)

g = gcd(d,N/d)

for i in range(len(divList)):

sum += (gcd(d,divList[i])ˆ2*etaTuple[i]/(g*d*divList[i]))
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sum *= (N/24)

return sum

# Note: order vanishing() when d=0 is the leading power of the fourier expansion

def eta weight(myTuple): # Assumes that N is understood and doesn’t depend on it.

sum = 0

for i in myTuple:

sum += i

return sum / 2

zeroTup=(0,-2,4,0,2,-4)# qˆ-6 eta-quotient weight 0

zztup=(3,-2,1,1,2,-5)# qˆ-8 eta-quotient weight 0

gzero=eta from tuple(zeroTup,52,30)-2# -2 since 1 is in M ]
0(52) and so is gzero+2

gzz=eta from tuple(zztup,52,30)

print gzero

print gzz

func=[] func.append((qˆ5 - 1/3*qˆ7 - 2/3*qˆ9 - 4/3*qˆ11 - 1/3*qˆ13 + 1/3*qˆ15 + 2*qˆ17

- 2*qˆ19 + 1/3*qˆ21 + 2*qˆ23 - 2/3*qˆ25 + 4/3*qˆ27 - 2/3*qˆ29 + O(qˆ30))*gzero*gzero)

func.append((qˆ2 - qˆ6 + qˆ8 - 2*qˆ10 - 2*qˆ12 + 2*qˆ18 + qˆ20 + 2*qˆ22 - qˆ24 + qˆ28

+ O(qˆ30))*gzz)

func.append((q - 4/3*qˆ7 - 5/3*qˆ9 + 2/3*qˆ11 - 1/3*qˆ13 - 2/3*qˆ15 + 2*qˆ17 - 2*qˆ19

- 2/3*qˆ21 + 4*qˆ23 + 1/3*qˆ25 - 8/3*qˆ27 + 10/3*qˆ29 + O(qˆ30))*gzero)

func.append((qˆ2 - qˆ6 + qˆ8 - 2*qˆ10 - 2*qˆ12 + 2*qˆ18 + qˆ20 + 2*qˆ22 - qˆ24 + qˆ28

+ O(qˆ30))*gzero)

func.append((qˆ3 - 2/3*qˆ7 - 7/3*qˆ9 + 4/3*qˆ11 + 1/3*qˆ13 - 4/3*qˆ15 + qˆ17 - 2*qˆ19

+ 2/3*qˆ21 + 2*qˆ23 + 5/3*qˆ25 + 5/3*qˆ27 + 2/3*qˆ29 + O(qˆ30))*gzero)

func.append((qˆ4 - 2*qˆ6 + qˆ10 - qˆ12 + qˆ14 + qˆ16 + 4*qˆ18 - 2*qˆ20 - 4*qˆ22 - 2*qˆ24

- qˆ26 + O(qˆ30))*gzero)

func.append((qˆ5 - 1/3*qˆ7 - 2/3*qˆ9 - 4/3*qˆ11 - 1/3*qˆ13 + 1/3*qˆ15 + 2*qˆ17 - 2*qˆ19
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+ 1/3*qˆ21 + 2*qˆ23 - 2/3*qˆ25 + 4/3*qˆ27 - 2/3*qˆ29 + O(qˆ30))*gzero)

func.append(q - 4/3*qˆ7 - 5/3*qˆ9 + 2/3*qˆ11 - 1/3*qˆ13 - 2/3*qˆ15 + 2*qˆ17 - 2*qˆ19 -

2/3*qˆ21 + 4*qˆ23 + 1/3*qˆ25 - 8/3*qˆ27 + 10/3*qˆ29 + O(qˆ30))

func.append(qˆ2 - qˆ6 + qˆ8 - 2*qˆ10 - 2*qˆ12 + 2*qˆ18 + qˆ20 + 2*qˆ22 - qˆ24 + qˆ28

+ O(qˆ30))

func.append(qˆ3 - 2/3*qˆ7 - 7/3*qˆ9 + 4/3*qˆ11 + 1/3*qˆ13 - 4/3*qˆ15 + qˆ17 - 2*qˆ19

+ 2/3*qˆ21 + 2*qˆ23 + 5/3*qˆ25 + 5/3*qˆ27 + 2/3*qˆ29 + O(qˆ30))

func.append(qˆ4 - 2*qˆ6 + qˆ10 - qˆ12 + qˆ14 + qˆ16 + 4*qˆ18 - 2*qˆ20 - 4*qˆ22 - 2*qˆ24

- qˆ26 + O(qˆ30))

func.append(qˆ5 - 1/3*qˆ7 - 2/3*qˆ9 - 4/3*qˆ11 - 1/3*qˆ13 + 1/3*qˆ15 + 2*qˆ17 - 2*qˆ19

+ 1/3*qˆ21 + 2*qˆ23 - 2/3*qˆ25 + 4/3*qˆ27 - 2/3*qˆ29 + O(qˆ30))

M=Matrix(QQ,len(func),(17))

for i in range(len(func)):

for e in [0..16]:

M[(i,e)]=func[i][e-7]

MM=M.rref()

newFunc=[]

for i in range(len(func)):

f=0

for e in [0..16]:

f+=MM[i,e]*qˆ(e-7)

newFunc.append(f)

for i in newFunc:

print latex(i)
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Appendix B. Generating Functions: Re-

currence Relations for the Omitted

Proofs

B.1 k ≡ 0 mod 12

Let k = 12l, and y = 7k = 84l.

The recurrence relation:

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

+ (2b2−k(y − 2,m) + b2−k(y − 4,m))fk,6−y

+ (b2−k(y − 1,m) + 2b2−k(y − 3,m) + b2−k(y − 5,m))fk,7−y

+ (b2−k(y − 2,m) + 2b2−k(y − 4,m))fk,8−y

+ (b2−k(y − 3,m) + 2b2−k(y − 5,m))fk,9−y

+ b2−k(y − 4,m)fk,10−y

+ b2−k(y − 5,m)fk,11−y

+ b2−k(y − 2,m)c2fk,−y − cm+yfk,−y −
y+m−6∑
r=2

crfk,m−r.

The generating function:

Fk(z, τ) =fk,−y(τ)q−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y + fk,8−y(τ)q8−y + fk,9−y(τ)q9−y

+ fk,10−y(τ)q10−y + fk,11−y(τ)q11−y +
∞∑

n=2−y

fk,n+6q
n+6(τ).
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B.2 k ≡ 4 mod 12

Let k = 12l + 4 and y = 7k − 2.

The recurrence relation:

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

+ (b2−k(y + 2,m) + b2−k(y − 2,m))fk,4−y

+ (2b2−k(y − 1,m) + b2−k(y − 3,m) + b2−k(y + 1,m))fk,5−y

+ 2b2−k(y − 2,m)fk,6−y

+ (b2−k(y − 1,m) + 2b2−k(y − 3,m))fk,7−y

+ b2−k(y − 2,m)fk,8−y

+ b2−k(y − 3,m)fk,9−y

+ c2b2−k(y − 2,m)fk,−y − cm+yfk,−y −
y+m−4∑
r=2

crfk,m−r.

The generating function:

Fk(z, τ) =fk,−y(τ)q−y + fk,4−y(τ)q4−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y + fk,7−y(τ)q7−y

+ fk,8−y(τ)q8−y + fk,9−y(τ)q9−y +
∞∑

n=2−y

fk,n+6q
n+6(τ).
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B.3 k ≡ 6 mod 12

Let k = 12l + 6 and y = 84l + 39.

The recurrence relation:

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

+ (b2−k(y + 3,m) + 2b2−k(y + 1,m) + b2−k(y − 1,m))fk,3−y

+ (b2−k(y + 2,m) + b2−k(y − 2,m))fk,4−y

+ (b2−k(y + 1,m) + 2b2−k(y − 1,m))fk,5−y

+ 2b2−k(y − 2,m)fk,6−y

+ b2−k(y − 1,m)fk,7−y

+ b2−k(y − 2,m)fk,8−y

+ c2b2−k(y − 2,m)fk,−y − cm+yfk,−y −
y+m−3∑
r=2

crfk,m−r.

The generating function:

Fk(z, τ) =fk,−y(τ)q−y + fk,3−y(τ)q3−y + fk,4−y(τ)q4−y + fk,5−y(τ)q5−y + fk,6−y(τ)q6−y

+ fk,7−y(τ)q7−y + fk,8−y(τ)q8−y +
∞∑

n=2−y

fk,n+6q
n+6(τ).
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B.4 k ≡ 8 mod 12

Let k = 12l + 8 and y = 84l + 52.

The recurrence relation:

fk,m+6 =ϕ6fk,m − 2fk,m+4 − fk,m+2

+ (b2−k(y + 6,m) + 2b2−k(y + 4,m) + b2−k(y + 2,m))fk,−y

+ (b2−k(y + 4,m) + 2b2−k(y + 2,m))fk,2−y

+ (b2−k(y + 3,m) + 2b2−k(y + 1,m) + b2−k(y − 1,m))fk,3−y

+ b2−k(y + 2,m)fk,4−y

+ (b2−k(y + 1,m) + 2b2−k(y − 1,m))fk,5−y

+ b2−k(y − 1,m)fk,7−y

− cm+yfk,−y −
y+m−2∑
r=2

crfk,m−r.

The generating function:

Fk(z, τ) =fk,−y(τ)q−y + fk,2−y(τ)q2−y + fk,3−y(τ)q3−y + fk,4−y(τ)q4−y + fk,5−y(τ)q5−y

+ fk,6−y(τ)q6−y + fk,7−y(τ)q7−y +
∞∑

n=2−y

fk,n+6q
n+6(τ).
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