Math 343H Lab 7: Integration by Parts

Objective

In this lab we explore linear algebraic alternatives to integration by parts.

The space of continuous functions

We begin by considering the space $C[a, b]$ of continuous functions defined on the set $[a, b]$. Note that this is a vector space. For example, if $f(x)$ and $g(x)$ are continuous, then so are $f(x) + g(x)$ and $af(x)$, where $a \in \mathbb{R}$. For the same reasons, the space $C^1[a, b]$ of continuously differentiable functions defined on the set $[a, b]$ is also a vector space. Note that

$$
\frac{d}{dx} : C^1[a, b] \rightarrow C[a, b]
$$

is a linear transformation since

$$
\frac{d}{dx}(af(x) + bg(x)) = a\frac{d}{dx}f(x) + b\frac{d}{dx}g(x).
$$

We remark that both $C[a, b]$ and $C^1[a, b]$ are infinite dimensional vector spaces (sometimes called function spaces), and thus we cannot represent the linear transformation with a matrix representation.

Subspaces of continuous functions

Consider the subspace W of $C^1[a, b]$ spanned by the basis $B = \{e^x, xe^x, x^2e^x\}$. Note that

$$
\frac{d}{dx}e^x = e^x
$$

$$
\frac{d}{dx}xe^x = e^x + xe^x
$$

$$
\frac{d}{dx}x^2e^x = 2xe^x + x^2e^x,
$$
or in other words, the derivatives of the basis functions B of W are in W, that is,

$$\frac{d}{dx} : W \rightarrow W.$$

Since this is a linear transformation from one finite dimensional vector space to another, it has a matrix representation. Since B is a basis for W, a linear combination $f(x) = ae^x + bxe^x + cx^2e^x$ can simply be represented as a column vector

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Sometimes we write this as

$$\begin{bmatrix} e^x & xe^x & x^2e^x \end{bmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix},$$

just to keep the basis B visible. The derivative of $f(x)$ takes the form

$$\frac{d}{dx} (ae^x + bxe^x + cx^2e^x) = ae^x + b(e^x + xe^x) + c(2xe^x + x^2e^x)$$

$$= (a + b)e^x + (b + 2c)xe^x + cx^2e^x$$

$$= \begin{bmatrix} e^x & xe^x & x^2e^x \end{bmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Hence the matrix representation of the derivative on W is

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

or in other words

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$
Example

Consider the function $g(x) = 5e^x - 3xe^x + 2x^2e^x$. Note that

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$

Hence, $g'(x) = 2e^x + xe^x + 2x^2e^x$.

Antiderivatives

Recall that the antiderivative is also a linear transformation. Note that the antiderivative of the derivative is the original function\(^1\), and hence the matrix representation of the antiderivative is the inverse of the matrix representation of the derivative. For example, if we wanted to compute

$$\int ae^x + bxe^x + cx^2e^x \, dx,$$

we could simply invert the matrix representation of the derivative

$$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}.$$

This gives us the transformation

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

Example

Consider the function $h(x) = 2e^x + xe^x + 2x^2e^x$. Note that

$$\begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}.$$

\(^1\)This is true up to an additive constant.
Hence the antiderivative of $h(x)$ is $5e^x - 3xe^x + 2x^2e^x + C$. We see from the previous example that we get the right answer. What’s more is we didn’t need to use integration by parts to get the answer!

Assignment

Problem 1. Apply the above concepts by writing a MATLAB function called `myint` that takes as input the vector $[a_0, a_1, \cdots, a_n]$ and computes the antiderivative of

$$f(x) = a_0e^x + a_1xe^x + a_2x^2e^x + \cdots + a_nx^n e^x.$$

Hint: Find the matrix representation of the derivative, then take the inverse.

Problem 2. Let W be the subspace of $C^1[a,b]$ spanned by the basis

$$B = \{\cos(\alpha x)e^{\beta x}, \sin(\alpha x)e^{\beta x}\}.$$

(a). Find the matrix representation D of the derivative in the basis B.

(b). Find the inverse of D.

(c). Use your answer above to find the anti-derivative of

$$f(x) = 14 \sin(\alpha x)e^{\beta x}.$$

We remark that the traditional way to do this problem requires a special trick where one integrates by parts twice. Doing it this way, one can avoid all that.